This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021) Avoid ax-12 . (Revised by TM, 31-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnv0 | ⊢ ◡ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 | ⊢ ¬ 𝑦 ∅ 𝑧 | |
| 2 | 1 | intnan | ⊢ ¬ ( 𝑥 = 〈 𝑧 , 𝑦 〉 ∧ 𝑦 ∅ 𝑧 ) |
| 3 | 2 | nex | ⊢ ¬ ∃ 𝑦 ( 𝑥 = 〈 𝑧 , 𝑦 〉 ∧ 𝑦 ∅ 𝑧 ) |
| 4 | 3 | nex | ⊢ ¬ ∃ 𝑧 ∃ 𝑦 ( 𝑥 = 〈 𝑧 , 𝑦 〉 ∧ 𝑦 ∅ 𝑧 ) |
| 5 | df-cnv | ⊢ ◡ ∅ = { 〈 𝑧 , 𝑦 〉 ∣ 𝑦 ∅ 𝑧 } | |
| 6 | 5 | eleq2i | ⊢ ( 𝑥 ∈ ◡ ∅ ↔ 𝑥 ∈ { 〈 𝑧 , 𝑦 〉 ∣ 𝑦 ∅ 𝑧 } ) |
| 7 | elopabw | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ { 〈 𝑧 , 𝑦 〉 ∣ 𝑦 ∅ 𝑧 } ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 = 〈 𝑧 , 𝑦 〉 ∧ 𝑦 ∅ 𝑧 ) ) ) | |
| 8 | 7 | elv | ⊢ ( 𝑥 ∈ { 〈 𝑧 , 𝑦 〉 ∣ 𝑦 ∅ 𝑧 } ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 = 〈 𝑧 , 𝑦 〉 ∧ 𝑦 ∅ 𝑧 ) ) |
| 9 | 6 8 | bitri | ⊢ ( 𝑥 ∈ ◡ ∅ ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 = 〈 𝑧 , 𝑦 〉 ∧ 𝑦 ∅ 𝑧 ) ) |
| 10 | 4 9 | mtbir | ⊢ ¬ 𝑥 ∈ ◡ ∅ |
| 11 | 10 | nel0 | ⊢ ◡ ∅ = ∅ |