This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr2pthlem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgr2pthlem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgr2pth0 | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2pthlem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgr2pthlem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | usgr2pth | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 4 | r19.42v | ⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) | |
| 5 | rexdifpr | ⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 6 | 4 5 | bitr3i | ⊢ ( ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑧 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 8 | rexcom | ⊢ ( ∃ 𝑧 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 9 | df-3an | ⊢ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 10 | anass | ⊢ ( ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 11 | anass | ⊢ ( ( ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 12 | anass | ⊢ ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ↔ ( 𝑦 ≠ 𝑥 ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ) ) | |
| 13 | ancom | ⊢ ( ( 𝑦 ≠ 𝑥 ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ) ↔ ( ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ∧ 𝑦 ≠ 𝑥 ) ) | |
| 14 | necom | ⊢ ( 𝑦 ≠ 𝑧 ↔ 𝑧 ≠ 𝑦 ) | |
| 15 | 14 | anbi2ci | ⊢ ( ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ) |
| 16 | 15 | anbi1i | ⊢ ( ( ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ∧ 𝑦 ≠ 𝑥 ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ) |
| 17 | 12 13 16 | 3bitri | ⊢ ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ) |
| 18 | 17 | anbi1i | ⊢ ( ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 19 | df-3an | ⊢ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 20 | 11 18 19 | 3bitr4i | ⊢ ( ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 21 | 9 10 20 | 3bitr2i | ⊢ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 22 | 21 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 23 | rexdifpr | ⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) | |
| 24 | r19.42v | ⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) | |
| 25 | 22 23 24 | 3bitr2i | ⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 26 | 25 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 27 | 7 8 26 | 3bitri | ⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 28 | rexdifsn | ⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) | |
| 29 | rexdifsn | ⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) | |
| 30 | 27 28 29 | 3bitr4i | ⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) |
| 31 | 30 | a1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ 𝑉 ) → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 32 | 31 | rexbidva | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 33 | 32 | 3anbi3d | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 34 | 3 33 | bitrd | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |