This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018) (Proof shortened by Wolf Lammen, 15-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexdifpr | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ∧ 𝜑 ) ) ) | |
| 2 | eldifpr | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ) | |
| 3 | 3anass | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ) ∧ 𝜑 ) ) |
| 6 | df-3an | ⊢ ( ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑 ) ↔ ( ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ∧ 𝜑 ) ) | |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ) ∧ 𝜑 ) ) ) |
| 8 | 1 5 7 | 3bitr4i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑 ) ) ) |
| 9 | 8 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑 ) ) |