This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr2pthlem.v | |- V = ( Vtx ` G ) |
|
| usgr2pthlem.i | |- I = ( iEdg ` G ) |
||
| Assertion | usgr2pth0 | |- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2pthlem.v | |- V = ( Vtx ` G ) |
|
| 2 | usgr2pthlem.i | |- I = ( iEdg ` G ) |
|
| 3 | 1 2 | usgr2pth | |- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 4 | r19.42v | |- ( E. y e. ( V \ { x , z } ) ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
|
| 5 | rexdifpr | |- ( E. y e. ( V \ { x , z } ) ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 6 | 4 5 | bitr3i | |- ( ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 7 | 6 | rexbii | |- ( E. z e. V ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. z e. V E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 8 | rexcom | |- ( E. z e. V E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> E. y e. V E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 9 | df-3an | |- ( ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( ( y =/= x /\ y =/= z ) /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 10 | anass | |- ( ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( ( y =/= x /\ y =/= z ) /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 11 | anass | |- ( ( ( ( z =/= x /\ z =/= y ) /\ y =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( ( z =/= x /\ z =/= y ) /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 12 | anass | |- ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) <-> ( y =/= x /\ ( y =/= z /\ z =/= x ) ) ) |
|
| 13 | ancom | |- ( ( y =/= x /\ ( y =/= z /\ z =/= x ) ) <-> ( ( y =/= z /\ z =/= x ) /\ y =/= x ) ) |
|
| 14 | necom | |- ( y =/= z <-> z =/= y ) |
|
| 15 | 14 | anbi2ci | |- ( ( y =/= z /\ z =/= x ) <-> ( z =/= x /\ z =/= y ) ) |
| 16 | 15 | anbi1i | |- ( ( ( y =/= z /\ z =/= x ) /\ y =/= x ) <-> ( ( z =/= x /\ z =/= y ) /\ y =/= x ) ) |
| 17 | 12 13 16 | 3bitri | |- ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) <-> ( ( z =/= x /\ z =/= y ) /\ y =/= x ) ) |
| 18 | 17 | anbi1i | |- ( ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( ( ( z =/= x /\ z =/= y ) /\ y =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
| 19 | df-3an | |- ( ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( ( z =/= x /\ z =/= y ) /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 20 | 11 18 19 | 3bitr4i | |- ( ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 21 | 9 10 20 | 3bitr2i | |- ( ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 22 | 21 | rexbii | |- ( E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> E. z e. V ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 23 | rexdifpr | |- ( E. z e. ( V \ { x , y } ) ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. z e. V ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
|
| 24 | r19.42v | |- ( E. z e. ( V \ { x , y } ) ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
|
| 25 | 22 23 24 | 3bitr2i | |- ( E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
| 26 | 25 | rexbii | |- ( E. y e. V E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> E. y e. V ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
| 27 | 7 8 26 | 3bitri | |- ( E. z e. V ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. y e. V ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
| 28 | rexdifsn | |- ( E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. z e. V ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
|
| 29 | rexdifsn | |- ( E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. y e. V ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
|
| 30 | 27 28 29 | 3bitr4i | |- ( E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) |
| 31 | 30 | a1i | |- ( ( G e. USGraph /\ x e. V ) -> ( E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
| 32 | 31 | rexbidva | |- ( G e. USGraph -> ( E. x e. V E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
| 33 | 32 | 3anbi3d | |- ( G e. USGraph -> ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
| 34 | 3 33 | bitrd | |- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |