This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spthsfval | ⊢ ( SPaths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } | |
| 2 | cnveq | ⊢ ( 𝑝 = 𝑃 → ◡ 𝑝 = ◡ 𝑃 ) | |
| 3 | 2 | funeqd | ⊢ ( 𝑝 = 𝑃 → ( Fun ◡ 𝑝 ↔ Fun ◡ 𝑃 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( Fun ◡ 𝑝 ↔ Fun ◡ 𝑃 ) ) |
| 5 | reltrls | ⊢ Rel ( Trails ‘ 𝐺 ) | |
| 6 | 1 4 5 | brfvopabrbr | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |