This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph with one edge (with additional assumption that B =/= C since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgr1e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgr1e.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| uspgr1e.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| uspgr1e.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| uspgr1e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | ||
| usgr1e.e | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| Assertion | usgr1e | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgr1e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgr1e.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | uspgr1e.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 4 | uspgr1e.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | uspgr1e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | |
| 6 | usgr1e.e | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 7 | 1 2 3 4 5 | uspgr1e | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 8 | hashprg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ≠ 𝐶 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) ) | |
| 9 | 3 4 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) ) |
| 10 | 6 9 | mpbid | ⊢ ( 𝜑 → ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) |
| 11 | prex | ⊢ { 𝐵 , 𝐶 } ∈ V | |
| 12 | fveqeq2 | ⊢ ( 𝑥 = { 𝐵 , 𝐶 } → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) ) | |
| 13 | 11 12 | ralsn | ⊢ ( ∀ 𝑥 ∈ { { 𝐵 , 𝐶 } } ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) |
| 14 | 10 13 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ { { 𝐵 , 𝐶 } } ( ♯ ‘ 𝑥 ) = 2 ) |
| 15 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 17 | 5 | rneqd | ⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
| 18 | rnsnopg | ⊢ ( 𝐴 ∈ 𝑋 → ran { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { { 𝐵 , 𝐶 } } ) | |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → ran { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { { 𝐵 , 𝐶 } } ) |
| 20 | 16 17 19 | 3eqtrd | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝐵 , 𝐶 } } ) |
| 21 | 14 20 | raleqtrrdv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 2 ) |
| 22 | usgruspgrb | ⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 2 ) ) | |
| 23 | 7 21 22 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |