This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgruspgrb | ⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruspgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) | |
| 2 | edgusgr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑒 ) = 2 ) ) | |
| 3 | 2 | simprd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑒 ) = 2 ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝐺 ∈ USGraph → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) |
| 5 | 1 4 | jca | ⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 6 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ USPGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 8 | 7 | raleqdv | ⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ↔ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 11 | 9 10 | uspgrf | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 12 | f1f | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 13 | 12 | frnd | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 14 | ssel2 | ⊢ ( ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) ) → 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 15 | 14 | expcom | ⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 16 | fveqeq2 | ⊢ ( 𝑒 = 𝑦 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) | |
| 17 | 16 | rspcv | ⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 19 | 18 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝑦 ) ≤ 2 ) ) |
| 20 | 19 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) ≤ 2 ) ) |
| 21 | eldifi | ⊢ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) | |
| 22 | 21 | anim1i | ⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) → ( 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 23 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) | |
| 24 | 23 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 25 | 22 24 | sylibr | ⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 26 | 25 | ex | ⊢ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) ≤ 2 ) → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 28 | 20 27 | sylbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 29 | 17 28 | syl9 | ⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 30 | 15 29 | syld | ⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 31 | 30 | com13 | ⊢ ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 33 | 32 | ssrdv | ⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 34 | 33 | ex | ⊢ ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 35 | 13 34 | mpan9 | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 36 | f1ssr | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 37 | 35 36 | syldan | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 38 | 37 | ex | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 39 | 11 38 | syl | ⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 40 | 8 39 | sylbid | ⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 41 | 40 | imp | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 42 | 9 10 | isusgrs | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 44 | 41 43 | mpbird | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → 𝐺 ∈ USGraph ) |
| 45 | 5 44 | impbii | ⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |