This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgr1e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgr1e.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| uspgr1e.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| uspgr1e.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| uspgr1e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | ||
| Assertion | uspgr1e | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgr1e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgr1e.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | uspgr1e.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 4 | uspgr1e.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | uspgr1e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | |
| 6 | prex | ⊢ { 𝐵 , 𝐶 } ∈ V | |
| 7 | 6 | snid | ⊢ { 𝐵 , 𝐶 } ∈ { { 𝐵 , 𝐶 } } |
| 8 | f1sng | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ { 𝐵 , 𝐶 } ∈ { { 𝐵 , 𝐶 } } ) → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { { 𝐵 , 𝐶 } } ) | |
| 9 | 2 7 8 | sylancl | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { { 𝐵 , 𝐶 } } ) |
| 10 | 3 4 | prssd | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝑉 ) |
| 11 | 10 1 | sseqtrdi | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 12 | 6 | elpw | ⊢ ( { 𝐵 , 𝐶 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝐵 , 𝐶 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 14 | 13 3 | upgr1elem | ⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 15 | f1ss | ⊢ ( ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { { 𝐵 , 𝐶 } } ∧ { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 16 | 9 14 15 | syl2anc | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 17 | 6 | a1i | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ V ) |
| 18 | 17 3 | upgr1elem | ⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( V ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 19 | f1ss | ⊢ ( ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { { 𝐵 , 𝐶 } } ∧ { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( V ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( V ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 20 | 9 18 19 | syl2anc | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( V ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 21 | f1dm | ⊢ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( V ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { 𝐴 } ) | |
| 22 | f1eq2 | ⊢ ( dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { 𝐴 } → ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( 𝜑 → ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 24 | 16 23 | mpbird | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 25 | 5 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
| 26 | eqidd | ⊢ ( 𝜑 → { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 27 | 5 25 26 | f1eq123d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 28 | 24 27 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 29 | 1 | 1vgrex | ⊢ ( 𝐵 ∈ 𝑉 → 𝐺 ∈ V ) |
| 30 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 31 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 32 | 30 31 | isuspgr | ⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ USPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 33 | 3 29 32 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ∈ USPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 34 | 28 33 | mpbird | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |