This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr.y | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) | |
| uptr.r | ⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) | ||
| uptr.k | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | ||
| uptr.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| uptr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uptr.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| uptr.n | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) | ||
| uptr.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| uptr.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) | ||
| uptrlem3.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| uptrlem3.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) | ||
| Assertion | uptrlem3 | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr.y | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) | |
| 2 | uptr.r | ⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) | |
| 3 | uptr.k | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | |
| 4 | uptr.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 5 | uptr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | uptr.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 7 | uptr.n | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) | |
| 8 | uptr.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 9 | uptr.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) | |
| 10 | uptrlem3.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 11 | uptrlem3.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) | |
| 12 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 13 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 14 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 15 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 16 | 5 4 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 18 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 19 | 11 10 | eleqtrdi | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 22 | 21 10 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 23 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 24 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 25 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 26 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 28 | 12 8 13 14 15 17 18 20 22 23 24 25 26 27 | uptrlem1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) ℎ = ( ( ( 𝑍 𝐿 𝑦 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑁 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 29 | 28 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) ℎ = ( ( ( 𝑍 𝐿 𝑦 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑁 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 31 | inss1 | ⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 ) | |
| 32 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 33 | 31 32 | sstri | ⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 ) |
| 34 | 33 | ssbri | ⊢ ( 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
| 35 | 2 34 | syl | ⊢ ( 𝜑 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
| 36 | 4 30 35 | funcf1 | ⊢ ( 𝜑 → 𝑅 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 37 | 36 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
| 38 | 1 37 | eqeltrrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐸 ) ) |
| 39 | 6 35 | cofucla | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 40 | 3 39 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 41 | df-br | ⊢ ( 𝐾 ( 𝐶 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 42 | 40 41 | sylibr | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐸 ) 𝐿 ) |
| 43 | 10 4 6 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 44 | 43 11 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ 𝐵 ) |
| 45 | 4 8 13 35 5 44 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) : ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ⟶ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 46 | 45 9 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) ∈ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 47 | 10 6 35 3 11 | cofu1a | ⊢ ( 𝜑 → ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 𝐾 ‘ 𝑍 ) ) |
| 48 | 1 47 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) ) = ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑍 ) ) ) |
| 49 | 46 7 48 | 3eltr3d | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑍 ) ) ) |
| 50 | 10 30 12 13 15 38 42 11 49 | isup | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ↔ ∀ 𝑦 ∈ 𝐴 ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) ℎ = ( ( ( 𝑍 𝐿 𝑦 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑁 ) ) ) |
| 51 | 10 4 12 8 14 5 6 11 9 | isup | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 52 | 29 50 51 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |