This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr.y | |- ( ph -> ( R ` X ) = Y ) |
|
| uptr.r | |- ( ph -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) |
||
| uptr.k | |- ( ph -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) |
||
| uptr.b | |- B = ( Base ` D ) |
||
| uptr.x | |- ( ph -> X e. B ) |
||
| uptr.f | |- ( ph -> F ( C Func D ) G ) |
||
| uptr.n | |- ( ph -> ( ( X S ( F ` Z ) ) ` M ) = N ) |
||
| uptr.j | |- J = ( Hom ` D ) |
||
| uptr.m | |- ( ph -> M e. ( X J ( F ` Z ) ) ) |
||
| uptrlem3.a | |- A = ( Base ` C ) |
||
| uptrlem3.z | |- ( ph -> Z e. A ) |
||
| Assertion | uptrlem3 | |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr.y | |- ( ph -> ( R ` X ) = Y ) |
|
| 2 | uptr.r | |- ( ph -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) |
|
| 3 | uptr.k | |- ( ph -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) |
|
| 4 | uptr.b | |- B = ( Base ` D ) |
|
| 5 | uptr.x | |- ( ph -> X e. B ) |
|
| 6 | uptr.f | |- ( ph -> F ( C Func D ) G ) |
|
| 7 | uptr.n | |- ( ph -> ( ( X S ( F ` Z ) ) ` M ) = N ) |
|
| 8 | uptr.j | |- J = ( Hom ` D ) |
|
| 9 | uptr.m | |- ( ph -> M e. ( X J ( F ` Z ) ) ) |
|
| 10 | uptrlem3.a | |- A = ( Base ` C ) |
|
| 11 | uptrlem3.z | |- ( ph -> Z e. A ) |
|
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 14 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 15 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 16 | 5 4 | eleqtrdi | |- ( ph -> X e. ( Base ` D ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ y e. A ) -> X e. ( Base ` D ) ) |
| 18 | 1 | adantr | |- ( ( ph /\ y e. A ) -> ( R ` X ) = Y ) |
| 19 | 11 10 | eleqtrdi | |- ( ph -> Z e. ( Base ` C ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ y e. A ) -> Z e. ( Base ` C ) ) |
| 21 | simpr | |- ( ( ph /\ y e. A ) -> y e. A ) |
|
| 22 | 21 10 | eleqtrdi | |- ( ( ph /\ y e. A ) -> y e. ( Base ` C ) ) |
| 23 | 9 | adantr | |- ( ( ph /\ y e. A ) -> M e. ( X J ( F ` Z ) ) ) |
| 24 | 7 | adantr | |- ( ( ph /\ y e. A ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) |
| 25 | 6 | adantr | |- ( ( ph /\ y e. A ) -> F ( C Func D ) G ) |
| 26 | 2 | adantr | |- ( ( ph /\ y e. A ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) |
| 27 | 3 | adantr | |- ( ( ph /\ y e. A ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) |
| 28 | 12 8 13 14 15 17 18 20 22 23 24 25 26 27 | uptrlem1 | |- ( ( ph /\ y e. A ) -> ( A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) <-> A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) |
| 29 | 28 | ralbidva | |- ( ph -> ( A. y e. A A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) <-> A. y e. A A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) |
| 30 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 31 | inss1 | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
|
| 32 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 33 | 31 32 | sstri | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 34 | 33 | ssbri | |- ( R ( ( D Full E ) i^i ( D Faith E ) ) S -> R ( D Func E ) S ) |
| 35 | 2 34 | syl | |- ( ph -> R ( D Func E ) S ) |
| 36 | 4 30 35 | funcf1 | |- ( ph -> R : B --> ( Base ` E ) ) |
| 37 | 36 5 | ffvelcdmd | |- ( ph -> ( R ` X ) e. ( Base ` E ) ) |
| 38 | 1 37 | eqeltrrd | |- ( ph -> Y e. ( Base ` E ) ) |
| 39 | 6 35 | cofucla | |- ( ph -> ( <. R , S >. o.func <. F , G >. ) e. ( C Func E ) ) |
| 40 | 3 39 | eqeltrrd | |- ( ph -> <. K , L >. e. ( C Func E ) ) |
| 41 | df-br | |- ( K ( C Func E ) L <-> <. K , L >. e. ( C Func E ) ) |
|
| 42 | 40 41 | sylibr | |- ( ph -> K ( C Func E ) L ) |
| 43 | 10 4 6 | funcf1 | |- ( ph -> F : A --> B ) |
| 44 | 43 11 | ffvelcdmd | |- ( ph -> ( F ` Z ) e. B ) |
| 45 | 4 8 13 35 5 44 | funcf2 | |- ( ph -> ( X S ( F ` Z ) ) : ( X J ( F ` Z ) ) --> ( ( R ` X ) ( Hom ` E ) ( R ` ( F ` Z ) ) ) ) |
| 46 | 45 9 | ffvelcdmd | |- ( ph -> ( ( X S ( F ` Z ) ) ` M ) e. ( ( R ` X ) ( Hom ` E ) ( R ` ( F ` Z ) ) ) ) |
| 47 | 10 6 35 3 11 | cofu1a | |- ( ph -> ( R ` ( F ` Z ) ) = ( K ` Z ) ) |
| 48 | 1 47 | oveq12d | |- ( ph -> ( ( R ` X ) ( Hom ` E ) ( R ` ( F ` Z ) ) ) = ( Y ( Hom ` E ) ( K ` Z ) ) ) |
| 49 | 46 7 48 | 3eltr3d | |- ( ph -> N e. ( Y ( Hom ` E ) ( K ` Z ) ) ) |
| 50 | 10 30 12 13 15 38 42 11 49 | isup | |- ( ph -> ( Z ( <. K , L >. ( C UP E ) Y ) N <-> A. y e. A A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) ) ) |
| 51 | 10 4 12 8 14 5 6 11 9 | isup | |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> A. y e. A A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) |
| 52 | 29 50 51 | 3bitr4rd | |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) |