This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrimwlk . (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimwlk.f | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) | ||
| Assertion | upgrimwlklem2 | ⊢ ( 𝜑 → 𝐸 ∈ Word dom 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimwlk.f | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐻 ∈ USPGraph ) |
| 9 | 2 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 11 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 13 | uspgruhgr | ⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) | |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) |
| 15 | 12 14 | jca | ⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 17 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 18 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 19 | 12 18 | syl | ⊢ ( 𝜑 → Fun 𝐼 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → Fun 𝐼 ) |
| 21 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 22 | 21 | ffdmd | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 23 | 7 22 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 24 | 23 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) |
| 25 | 1 | iedgedg | ⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 26 | 20 24 25 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 27 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 28 | eqid | ⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) | |
| 29 | 27 28 | uhgrimedgi | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 30 | 16 17 26 29 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 31 | f1ocnvdm | ⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) | |
| 32 | 10 30 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 33 | 32 6 | fmptd | ⊢ ( 𝜑 → 𝐸 : dom 𝐹 ⟶ dom 𝐽 ) |
| 34 | 1 2 3 4 5 6 7 | upgrimwlklem1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 36 | iswrdb | ⊢ ( 𝐹 ∈ Word dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 37 | fdm | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 38 | 37 | eqcomd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 39 | 36 38 | sylbi | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 40 | 7 39 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 41 | 35 40 | eqtrd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = dom 𝐹 ) |
| 42 | 41 | feq2d | ⊢ ( 𝜑 → ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ↔ 𝐸 : dom 𝐹 ⟶ dom 𝐽 ) ) |
| 43 | 33 42 | mpbird | ⊢ ( 𝜑 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ) |
| 44 | iswrdb | ⊢ ( 𝐸 ∈ Word dom 𝐽 ↔ 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ) | |
| 45 | 43 44 | sylibr | ⊢ ( 𝜑 → 𝐸 ∈ Word dom 𝐽 ) |