This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrimwlk . (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
||
| Assertion | upgrimwlklem2 | |- ( ph -> E e. Word dom J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
|
| 8 | 4 | adantr | |- ( ( ph /\ x e. dom F ) -> H e. USPGraph ) |
| 9 | 2 | uspgrf1oedg | |- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 10 | 8 9 | syl | |- ( ( ph /\ x e. dom F ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 11 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 12 | 3 11 | syl | |- ( ph -> G e. UHGraph ) |
| 13 | uspgruhgr | |- ( H e. USPGraph -> H e. UHGraph ) |
|
| 14 | 4 13 | syl | |- ( ph -> H e. UHGraph ) |
| 15 | 12 14 | jca | |- ( ph -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ x e. dom F ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 17 | 5 | adantr | |- ( ( ph /\ x e. dom F ) -> N e. ( G GraphIso H ) ) |
| 18 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 19 | 12 18 | syl | |- ( ph -> Fun I ) |
| 20 | 19 | adantr | |- ( ( ph /\ x e. dom F ) -> Fun I ) |
| 21 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 22 | 21 | ffdmd | |- ( F e. Word dom I -> F : dom F --> dom I ) |
| 23 | 7 22 | syl | |- ( ph -> F : dom F --> dom I ) |
| 24 | 23 | ffvelcdmda | |- ( ( ph /\ x e. dom F ) -> ( F ` x ) e. dom I ) |
| 25 | 1 | iedgedg | |- ( ( Fun I /\ ( F ` x ) e. dom I ) -> ( I ` ( F ` x ) ) e. ( Edg ` G ) ) |
| 26 | 20 24 25 | syl2anc | |- ( ( ph /\ x e. dom F ) -> ( I ` ( F ` x ) ) e. ( Edg ` G ) ) |
| 27 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 28 | eqid | |- ( Edg ` H ) = ( Edg ` H ) |
|
| 29 | 27 28 | uhgrimedgi | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( N e. ( G GraphIso H ) /\ ( I ` ( F ` x ) ) e. ( Edg ` G ) ) ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 30 | 16 17 26 29 | syl12anc | |- ( ( ph /\ x e. dom F ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 31 | f1ocnvdm | |- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
|
| 32 | 10 30 31 | syl2anc | |- ( ( ph /\ x e. dom F ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 33 | 32 6 | fmptd | |- ( ph -> E : dom F --> dom J ) |
| 34 | 1 2 3 4 5 6 7 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 35 | 34 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 36 | iswrdb | |- ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 37 | fdm | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 38 | 37 | eqcomd | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 39 | 36 38 | sylbi | |- ( F e. Word dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 40 | 7 39 | syl | |- ( ph -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 41 | 35 40 | eqtrd | |- ( ph -> ( 0 ..^ ( # ` E ) ) = dom F ) |
| 42 | 41 | feq2d | |- ( ph -> ( E : ( 0 ..^ ( # ` E ) ) --> dom J <-> E : dom F --> dom J ) ) |
| 43 | 33 42 | mpbird | |- ( ph -> E : ( 0 ..^ ( # ` E ) ) --> dom J ) |
| 44 | iswrdb | |- ( E e. Word dom J <-> E : ( 0 ..^ ( # ` E ) ) --> dom J ) |
|
| 45 | 43 44 | sylibr | |- ( ph -> E e. Word dom J ) |