This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgrewlkle2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | ewlkprop | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 3 | fvex | ⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V | |
| 4 | hashin | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 6 | simpl3 | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐺 ∈ UPGraph ) | |
| 7 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 8 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 10 | 9 | funfnd | ⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 13 | elfzofz | ⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 14 | fz1fzo0m1 | ⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 16 | wrdsymbcl | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 17 | 15 16 | sylan2 | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 18 | 17 | 3ad2antl2 | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 19 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 20 | 19 1 | upgrle | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) |
| 21 | 6 12 18 20 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) |
| 22 | 3 | inex1 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V |
| 23 | hashxrcl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* |
| 25 | hashxrcl | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ) | |
| 26 | 3 25 | ax-mp | ⊢ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* |
| 27 | 2re | ⊢ 2 ∈ ℝ | |
| 28 | 27 | rexri | ⊢ 2 ∈ ℝ* |
| 29 | 24 26 28 | 3pm3.2i | ⊢ ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) |
| 30 | 29 | a1i | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) ) |
| 31 | xrletr | ⊢ ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) ) |
| 33 | 21 32 | mpan2d | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) ) |
| 34 | 5 33 | mpi | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) |
| 35 | xnn0xr | ⊢ ( 𝑆 ∈ ℕ0* → 𝑆 ∈ ℝ* ) | |
| 36 | 24 | a1i | ⊢ ( 𝑆 ∈ ℕ0* → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) |
| 37 | 28 | a1i | ⊢ ( 𝑆 ∈ ℕ0* → 2 ∈ ℝ* ) |
| 38 | xrletr | ⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) → 𝑆 ≤ 2 ) ) | |
| 39 | 35 36 37 38 | syl3anc | ⊢ ( 𝑆 ∈ ℕ0* → ( ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) → 𝑆 ≤ 2 ) ) |
| 40 | 39 | expcomd | ⊢ ( 𝑆 ∈ ℕ0* → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
| 44 | 34 43 | mpd | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) |
| 45 | 44 | ralimdva | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) |
| 46 | 45 | 3exp | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐺 ∈ UPGraph → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) ) ) |
| 47 | 46 | com34 | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐺 ∈ UPGraph → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) ) ) |
| 48 | 47 | 3imp | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐺 ∈ UPGraph → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) |
| 49 | lencl | ⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 50 | 1zzd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℤ ) | |
| 51 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 52 | fzon | ⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐹 ) ≤ 1 ↔ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ) ) | |
| 53 | 50 51 52 | syl2anc | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ≤ 1 ↔ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ) ) |
| 54 | nn0re | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) | |
| 55 | 1red | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℝ ) | |
| 56 | 54 55 | lenltd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝐹 ) ) ) |
| 57 | 53 56 | bitr3d | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ↔ ¬ 1 < ( ♯ ‘ 𝐹 ) ) ) |
| 58 | 57 | biimpd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ → ¬ 1 < ( ♯ ‘ 𝐹 ) ) ) |
| 59 | 58 | necon2ad | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ≠ ∅ ) ) |
| 60 | rspn0 | ⊢ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ≠ ∅ → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → 𝑆 ≤ 2 ) ) | |
| 61 | 59 60 | syl6com | ⊢ ( 1 < ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → 𝑆 ≤ 2 ) ) ) |
| 62 | 61 | com3l | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
| 63 | 49 62 | syl | ⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
| 64 | 63 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
| 65 | 48 64 | syld | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐺 ∈ UPGraph → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
| 66 | 2 65 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐺 ∈ UPGraph → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
| 67 | 66 | 3imp21 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ 2 ) |