This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | ewlkprop | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | df-ewlks | ⊢ EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | |
| 3 | 2 | elmpocl | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ) |
| 4 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ) | |
| 5 | 1 | isewlk | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 7 | 6 | biimpd | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 8 | 7 | expcom | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 9 | 8 | pm2.43a | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ) → ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 11 | 3anass | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↔ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | |
| 12 | 4 10 11 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 13 | 3 12 | mpdan | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |