This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A universal property defines an essentially unique (strong form) pair of object X and morphism M if it exists. (Contributed by Zhi Wang, 19-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | ||
| upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
| upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | ||
| upcic.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | ||
| upcic.2 | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) | ||
| Assertion | upeu | ⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 7 | upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | |
| 10 | upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 11 | upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | |
| 12 | upcic.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 13 | upcic.2 | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) | |
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | upciclem4 | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 15 | 14 | simprd | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 16 | eqid | ⊢ ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 ) | |
| 17 | 6 | funcrcl2 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 18 | 1 3 16 17 7 8 | isohom | ⊢ ( 𝜑 → ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| 19 | 11 8 12 | upciclem1 | ⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 20 | reurmo | ⊢ ( ∃! 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) → ∃* 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ∃* 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 22 | nfcv | ⊢ Ⅎ 𝑟 ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) | |
| 23 | nfcv | ⊢ Ⅎ 𝑟 ( 𝑋 𝐻 𝑌 ) | |
| 24 | 22 23 | ssrmof | ⊢ ( ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) → ( ∃* 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) → ∃* 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 25 | 18 21 24 | sylc | ⊢ ( 𝜑 → ∃* 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 26 | reu5 | ⊢ ( ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ( ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ∧ ∃* 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) | |
| 27 | 15 25 26 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |