This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrexf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| ssrexf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | ssrmof | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃* 𝑥 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | ssrexf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | 1 2 | dfssf | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 4 | 3 | biimpi | ⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 5 | pm3.45 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 5 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 | moim | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 9 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 10 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 11 | 8 9 10 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃* 𝑥 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |