This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A universal property defines an essentially unique (strong form) pair of object X and morphism M if it exists. (Contributed by Zhi Wang, 19-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | |- B = ( Base ` D ) |
|
| upcic.c | |- C = ( Base ` E ) |
||
| upcic.h | |- H = ( Hom ` D ) |
||
| upcic.j | |- J = ( Hom ` E ) |
||
| upcic.o | |- O = ( comp ` E ) |
||
| upcic.f | |- ( ph -> F ( D Func E ) G ) |
||
| upcic.x | |- ( ph -> X e. B ) |
||
| upcic.y | |- ( ph -> Y e. B ) |
||
| upcic.z | |- ( ph -> Z e. C ) |
||
| upcic.m | |- ( ph -> M e. ( Z J ( F ` X ) ) ) |
||
| upcic.1 | |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
||
| upcic.n | |- ( ph -> N e. ( Z J ( F ` Y ) ) ) |
||
| upcic.2 | |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v ) g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) |
||
| Assertion | upeu | |- ( ph -> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | |- B = ( Base ` D ) |
|
| 2 | upcic.c | |- C = ( Base ` E ) |
|
| 3 | upcic.h | |- H = ( Hom ` D ) |
|
| 4 | upcic.j | |- J = ( Hom ` E ) |
|
| 5 | upcic.o | |- O = ( comp ` E ) |
|
| 6 | upcic.f | |- ( ph -> F ( D Func E ) G ) |
|
| 7 | upcic.x | |- ( ph -> X e. B ) |
|
| 8 | upcic.y | |- ( ph -> Y e. B ) |
|
| 9 | upcic.z | |- ( ph -> Z e. C ) |
|
| 10 | upcic.m | |- ( ph -> M e. ( Z J ( F ` X ) ) ) |
|
| 11 | upcic.1 | |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
|
| 12 | upcic.n | |- ( ph -> N e. ( Z J ( F ` Y ) ) ) |
|
| 13 | upcic.2 | |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v ) g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) |
|
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | upciclem4 | |- ( ph -> ( X ( ~=c ` D ) Y /\ E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
| 15 | 14 | simprd | |- ( ph -> E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
| 16 | eqid | |- ( Iso ` D ) = ( Iso ` D ) |
|
| 17 | 6 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 18 | 1 3 16 17 7 8 | isohom | |- ( ph -> ( X ( Iso ` D ) Y ) C_ ( X H Y ) ) |
| 19 | 11 8 12 | upciclem1 | |- ( ph -> E! r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
| 20 | reurmo | |- ( E! r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) -> E* r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> E* r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
| 22 | nfcv | |- F/_ r ( X ( Iso ` D ) Y ) |
|
| 23 | nfcv | |- F/_ r ( X H Y ) |
|
| 24 | 22 23 | ssrmof | |- ( ( X ( Iso ` D ) Y ) C_ ( X H Y ) -> ( E* r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) -> E* r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
| 25 | 18 21 24 | sylc | |- ( ph -> E* r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
| 26 | reu5 | |- ( E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) <-> ( E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) /\ E* r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
|
| 27 | 15 25 26 | sylanbrc | |- ( ph -> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |