This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | ||
| upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
| upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | ||
| upeu2.i | ⊢ 𝐼 = ( Iso ‘ 𝐷 ) | ||
| upeu2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| upeu2.n | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | ||
| Assertion | upeu2 | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 7 | upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | |
| 10 | upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 11 | upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | |
| 12 | upeu2.i | ⊢ 𝐼 = ( Iso ‘ 𝐷 ) | |
| 13 | upeu2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 14 | upeu2.n | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 15 | 6 | funcrcl3 | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 16 | 1 2 6 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 17 | 16 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
| 18 | 16 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐶 ) |
| 19 | 1 3 4 6 7 8 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 20 | 6 | funcrcl2 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 21 | 1 3 12 20 7 8 | isohom | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| 22 | 21 13 | sseldd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 23 | 19 22 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 24 | 2 4 5 15 9 17 18 10 23 | catcocl | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 25 | 14 24 | eqeltrd | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 26 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
| 27 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → 𝑣 ∈ 𝐵 ) | |
| 28 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) | |
| 29 | 26 27 28 | upciclem1 | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ) |
| 30 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 31 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝐷 ∈ Cat ) |
| 32 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑋 ∈ 𝐵 ) |
| 33 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑌 ∈ 𝐵 ) |
| 34 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑣 ∈ 𝐵 ) |
| 35 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) | |
| 37 | 1 3 30 31 32 33 34 35 36 | catcocl | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ∈ ( 𝑋 𝐻 𝑣 ) ) |
| 38 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝐷 ∈ Cat ) |
| 39 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑋 ∈ 𝐵 ) |
| 40 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑌 ∈ 𝐵 ) |
| 41 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑣 ∈ 𝐵 ) |
| 42 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) | |
| 44 | 1 3 30 12 38 39 40 41 42 43 | upeu2lem | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) |
| 45 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) | |
| 46 | 45 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑣 ) ‘ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) |
| 47 | 46 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑣 ) ‘ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ) |
| 48 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 49 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 50 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 51 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑣 ∈ 𝐵 ) |
| 52 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑍 ∈ 𝐶 ) |
| 53 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
| 54 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 55 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) | |
| 56 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 57 | 1 2 3 4 5 48 49 50 51 52 53 30 54 55 56 | upciclem2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( ( 𝑋 𝐺 𝑣 ) ‘ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
| 58 | 47 57 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
| 59 | 58 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( 𝑔 = ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ↔ 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |
| 60 | 37 44 59 | reuxfr1dd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ( ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ↔ ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |
| 61 | 29 60 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
| 62 | 61 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
| 63 | 25 62 | jca | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |