This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | inocv.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| Assertion | unocv | ⊢ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inocv.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | unss | ⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | 2 | bicomi | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ) |
| 4 | ralunb | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 5 | 3 4 | anbi12i | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 6 | an4 | ⊢ ( ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | 9 10 11 12 1 | elocv | ⊢ ( 𝑧 ∈ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 14 | 3anan12 | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | |
| 15 | 13 14 | bitri | ⊢ ( 𝑧 ∈ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 16 | 9 10 11 12 1 | elocv | ⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 17 | 3anan12 | ⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | |
| 18 | 16 17 | bitri | ⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 19 | 9 10 11 12 1 | elocv | ⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 20 | 3anan12 | ⊢ ( ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | |
| 21 | 19 20 | bitri | ⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 22 | 18 21 | anbi12i | ⊢ ( ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
| 23 | elin | ⊢ ( 𝑧 ∈ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ) ) | |
| 24 | anandi | ⊢ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) | |
| 25 | 22 23 24 | 3bitr4i | ⊢ ( 𝑧 ∈ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
| 26 | 8 15 25 | 3bitr4i | ⊢ ( 𝑧 ∈ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ 𝑧 ∈ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 27 | 26 | eqriv | ⊢ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |