This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inocv.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| iunocv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | iunocv | ⊢ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inocv.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | iunocv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ) | |
| 4 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 6 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 9 | df-ral | ⊢ ( ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 10 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 12 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 14 | 8 9 13 | 3bitr4i | ⊢ ( ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 15 | 3 14 | anbi12i | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 16 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 17 | 15 16 | bitr4i | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 18 | eliin | ⊢ ( 𝑧 ∈ 𝑉 → ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ) ) | |
| 19 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 20 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 21 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 22 | 2 19 20 21 1 | elocv | ⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 23 | 3anan12 | ⊢ ( ( 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | |
| 24 | 22 23 | bitri | ⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 25 | 24 | baib | ⊢ ( 𝑧 ∈ 𝑉 → ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 26 | 25 | ralbidv | ⊢ ( 𝑧 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 27 | 18 26 | bitr2d | ⊢ ( 𝑧 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
| 28 | 17 27 | bitrid | ⊢ ( 𝑧 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
| 29 | 28 | pm5.32i | ⊢ ( ( 𝑧 ∈ 𝑉 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
| 30 | 2 19 20 21 1 | elocv | ⊢ ( 𝑧 ∈ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 31 | 3anan12 | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | |
| 32 | 30 31 | bitri | ⊢ ( 𝑧 ∈ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 33 | elin | ⊢ ( 𝑧 ∈ ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) | |
| 34 | 29 32 33 | 3bitr4i | ⊢ ( 𝑧 ∈ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ 𝑧 ∈ ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
| 35 | 34 | eqriv | ⊢ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) |