This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | dvdsrpropd | ⊢ ( 𝜑 → ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 3 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
| 6 | 5 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
| 7 | 6 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
| 8 | 7 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) ) |
| 9 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
| 10 | 1 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ) |
| 11 | 9 10 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ) ) |
| 12 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐿 ) ) ) |
| 13 | 2 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
| 14 | 12 13 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) ) |
| 15 | 8 11 14 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) ) |
| 16 | 15 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) } ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 18 | eqid | ⊢ ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐾 ) | |
| 19 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 20 | 17 18 19 | dvdsrval | ⊢ ( ∥r ‘ 𝐾 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) } |
| 21 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 22 | eqid | ⊢ ( ∥r ‘ 𝐿 ) = ( ∥r ‘ 𝐿 ) | |
| 23 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 24 | 21 22 23 | dvdsrval | ⊢ ( ∥r ‘ 𝐿 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) } |
| 25 | 16 20 24 | 3eqtr4g | ⊢ ( 𝜑 → ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐿 ) ) |