This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | unitpropd | |- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 4 | 1 2 3 | rngidpropd | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
| 5 | 4 | breq2d | |- ( ph -> ( z ( ||r ` K ) ( 1r ` K ) <-> z ( ||r ` K ) ( 1r ` L ) ) ) |
| 6 | 4 | breq2d | |- ( ph -> ( z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) <-> z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) ) ) |
| 7 | 5 6 | anbi12d | |- ( ph -> ( ( z ( ||r ` K ) ( 1r ` K ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) ) <-> ( z ( ||r ` K ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) ) ) ) |
| 8 | 1 2 3 | dvdsrpropd | |- ( ph -> ( ||r ` K ) = ( ||r ` L ) ) |
| 9 | 8 | breqd | |- ( ph -> ( z ( ||r ` K ) ( 1r ` L ) <-> z ( ||r ` L ) ( 1r ` L ) ) ) |
| 10 | eqid | |- ( oppR ` K ) = ( oppR ` K ) |
|
| 11 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 12 | 10 11 | opprbas | |- ( Base ` K ) = ( Base ` ( oppR ` K ) ) |
| 13 | 1 12 | eqtrdi | |- ( ph -> B = ( Base ` ( oppR ` K ) ) ) |
| 14 | eqid | |- ( oppR ` L ) = ( oppR ` L ) |
|
| 15 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 16 | 14 15 | opprbas | |- ( Base ` L ) = ( Base ` ( oppR ` L ) ) |
| 17 | 2 16 | eqtrdi | |- ( ph -> B = ( Base ` ( oppR ` L ) ) ) |
| 18 | 3 | ancom2s | |- ( ( ph /\ ( y e. B /\ x e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 19 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 20 | eqid | |- ( .r ` ( oppR ` K ) ) = ( .r ` ( oppR ` K ) ) |
|
| 21 | 11 19 10 20 | opprmul | |- ( y ( .r ` ( oppR ` K ) ) x ) = ( x ( .r ` K ) y ) |
| 22 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 23 | eqid | |- ( .r ` ( oppR ` L ) ) = ( .r ` ( oppR ` L ) ) |
|
| 24 | 15 22 14 23 | opprmul | |- ( y ( .r ` ( oppR ` L ) ) x ) = ( x ( .r ` L ) y ) |
| 25 | 18 21 24 | 3eqtr4g | |- ( ( ph /\ ( y e. B /\ x e. B ) ) -> ( y ( .r ` ( oppR ` K ) ) x ) = ( y ( .r ` ( oppR ` L ) ) x ) ) |
| 26 | 13 17 25 | dvdsrpropd | |- ( ph -> ( ||r ` ( oppR ` K ) ) = ( ||r ` ( oppR ` L ) ) ) |
| 27 | 26 | breqd | |- ( ph -> ( z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) <-> z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) |
| 28 | 9 27 | anbi12d | |- ( ph -> ( ( z ( ||r ` K ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) ) <-> ( z ( ||r ` L ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) ) |
| 29 | 7 28 | bitrd | |- ( ph -> ( ( z ( ||r ` K ) ( 1r ` K ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) ) <-> ( z ( ||r ` L ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) ) |
| 30 | eqid | |- ( Unit ` K ) = ( Unit ` K ) |
|
| 31 | eqid | |- ( 1r ` K ) = ( 1r ` K ) |
|
| 32 | eqid | |- ( ||r ` K ) = ( ||r ` K ) |
|
| 33 | eqid | |- ( ||r ` ( oppR ` K ) ) = ( ||r ` ( oppR ` K ) ) |
|
| 34 | 30 31 32 10 33 | isunit | |- ( z e. ( Unit ` K ) <-> ( z ( ||r ` K ) ( 1r ` K ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) ) ) |
| 35 | eqid | |- ( Unit ` L ) = ( Unit ` L ) |
|
| 36 | eqid | |- ( 1r ` L ) = ( 1r ` L ) |
|
| 37 | eqid | |- ( ||r ` L ) = ( ||r ` L ) |
|
| 38 | eqid | |- ( ||r ` ( oppR ` L ) ) = ( ||r ` ( oppR ` L ) ) |
|
| 39 | 35 36 37 14 38 | isunit | |- ( z e. ( Unit ` L ) <-> ( z ( ||r ` L ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) |
| 40 | 29 34 39 | 3bitr4g | |- ( ph -> ( z e. ( Unit ` K ) <-> z e. ( Unit ` L ) ) ) |
| 41 | 40 | eqrdv | |- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |