This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | 4 5 | mgpbas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 7 | 1 6 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 10 | 8 9 | mgpbas | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) |
| 11 | 2 10 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) ) |
| 12 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 13 | 4 12 | mgpplusg | ⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 14 | 13 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) |
| 15 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 16 | 8 15 | mgpplusg | ⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 17 | 16 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) |
| 18 | 3 14 17 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) ) |
| 19 | 7 11 18 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐿 ) ) ) |
| 20 | eqid | ⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) | |
| 21 | 4 20 | ringidval | ⊢ ( 1r ‘ 𝐾 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 22 | eqid | ⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) | |
| 23 | 8 22 | ringidval | ⊢ ( 1r ‘ 𝐿 ) = ( 0g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 24 | 19 21 23 | 3eqtr4g | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |