This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of alcom and biconditional form of alcomimw . Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | alcomw.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) | |
| alcomw.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | alcomw | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcomw.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | alcomw.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | 2 | alcomimw | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) |
| 4 | 1 | alcomimw | ⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 ) |
| 5 | 3 4 | impbii | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 𝜑 ) |