This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " A is a singleton". See also en1 , en1b , card1 , and eusn . (Contributed by NM, 2-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniintsn | ⊢ ( ∪ 𝐴 = ∩ 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vn0 | ⊢ V ≠ ∅ | |
| 2 | inteq | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) | |
| 3 | int0 | ⊢ ∩ ∅ = V | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
| 5 | 4 | adantl | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ 𝐴 = ∅ ) → ∩ 𝐴 = V ) |
| 6 | unieq | ⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) | |
| 7 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
| 9 | eqeq1 | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( ∪ 𝐴 = ∅ ↔ ∩ 𝐴 = ∅ ) ) | |
| 10 | 8 9 | imbitrid | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( 𝐴 = ∅ → ∩ 𝐴 = ∅ ) ) |
| 11 | 10 | imp | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ 𝐴 = ∅ ) → ∩ 𝐴 = ∅ ) |
| 12 | 5 11 | eqtr3d | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ 𝐴 = ∅ ) → V = ∅ ) |
| 13 | 12 | ex | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( 𝐴 = ∅ → V = ∅ ) ) |
| 14 | 13 | necon3d | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( V ≠ ∅ → 𝐴 ≠ ∅ ) ) |
| 15 | 1 14 | mpi | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → 𝐴 ≠ ∅ ) |
| 16 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 17 | 15 16 | sylib | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 18 19 | prss | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 ) |
| 21 | uniss | ⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐴 → ∪ { 𝑥 , 𝑦 } ⊆ ∪ 𝐴 ) | |
| 22 | 21 | adantl | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ { 𝑥 , 𝑦 } ⊆ ∪ 𝐴 ) |
| 23 | simpl | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ 𝐴 = ∩ 𝐴 ) | |
| 24 | 22 23 | sseqtrd | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ { 𝑥 , 𝑦 } ⊆ ∩ 𝐴 ) |
| 25 | intss | ⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐴 → ∩ 𝐴 ⊆ ∩ { 𝑥 , 𝑦 } ) | |
| 26 | 25 | adantl | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∩ 𝐴 ⊆ ∩ { 𝑥 , 𝑦 } ) |
| 27 | 24 26 | sstrd | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ { 𝑥 , 𝑦 } ⊆ ∩ { 𝑥 , 𝑦 } ) |
| 28 | 18 19 | unipr | ⊢ ∪ { 𝑥 , 𝑦 } = ( 𝑥 ∪ 𝑦 ) |
| 29 | 18 19 | intpr | ⊢ ∩ { 𝑥 , 𝑦 } = ( 𝑥 ∩ 𝑦 ) |
| 30 | 27 28 29 | 3sstr3g | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 31 | inss1 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 | |
| 32 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ 𝑦 ) | |
| 33 | 31 32 | sstri | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) |
| 34 | eqss | ⊢ ( ( 𝑥 ∪ 𝑦 ) = ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) ) ) | |
| 35 | uneqin | ⊢ ( ( 𝑥 ∪ 𝑦 ) = ( 𝑥 ∩ 𝑦 ) ↔ 𝑥 = 𝑦 ) | |
| 36 | 34 35 | bitr3i | ⊢ ( ( ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) |
| 37 | 30 33 36 | sylanblc | ⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → 𝑥 = 𝑦 ) |
| 38 | 37 | ex | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( { 𝑥 , 𝑦 } ⊆ 𝐴 → 𝑥 = 𝑦 ) ) |
| 39 | 20 38 | biimtrid | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 40 | 39 | alrimivv | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 41 | 17 40 | jca | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 42 | euabsn | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ) | |
| 43 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 44 | 43 | eu4 | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 45 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 | |
| 46 | 45 | eqeq1i | ⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ↔ 𝐴 = { 𝑥 } ) |
| 47 | 46 | exbii | ⊢ ( ∃ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 48 | 42 44 47 | 3bitr3i | ⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 49 | 41 48 | sylib | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 50 | unisnv | ⊢ ∪ { 𝑥 } = 𝑥 | |
| 51 | unieq | ⊢ ( 𝐴 = { 𝑥 } → ∪ 𝐴 = ∪ { 𝑥 } ) | |
| 52 | inteq | ⊢ ( 𝐴 = { 𝑥 } → ∩ 𝐴 = ∩ { 𝑥 } ) | |
| 53 | 18 | intsn | ⊢ ∩ { 𝑥 } = 𝑥 |
| 54 | 52 53 | eqtrdi | ⊢ ( 𝐴 = { 𝑥 } → ∩ 𝐴 = 𝑥 ) |
| 55 | 50 51 54 | 3eqtr4a | ⊢ ( 𝐴 = { 𝑥 } → ∪ 𝐴 = ∩ 𝐴 ) |
| 56 | 55 | exlimiv | ⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → ∪ 𝐴 = ∩ 𝐴 ) |
| 57 | 49 56 | impbii | ⊢ ( ∪ 𝐴 = ∩ 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |