This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uneqin | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | unss | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 3 | ssin | ⊢ ( ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ 𝐴 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 4 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
| 5 | 3 4 | sylbir | ⊢ ( 𝐴 ⊆ ( 𝐴 ∩ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 6 | ssin | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 7 | simpl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵 ) → 𝐵 ⊆ 𝐴 ) | |
| 8 | 6 7 | sylbir | ⊢ ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 9 | 5 8 | anim12i | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
| 10 | 2 9 | sylbir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
| 11 | 1 10 | syl | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
| 12 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) → 𝐴 = 𝐵 ) |
| 14 | unidm | ⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 | |
| 15 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 16 | 14 15 | eqtr4i | ⊢ ( 𝐴 ∪ 𝐴 ) = ( 𝐴 ∩ 𝐴 ) |
| 17 | uneq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 18 | ineq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 19 | 16 17 18 | 3eqtr3a | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 20 | 13 19 | impbii | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ↔ 𝐴 = 𝐵 ) |