This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " A is a singleton". See also en1 , en1b , card1 , and eusn . (Contributed by NM, 2-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniintsn | |- ( U. A = |^| A <-> E. x A = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vn0 | |- _V =/= (/) |
|
| 2 | inteq | |- ( A = (/) -> |^| A = |^| (/) ) |
|
| 3 | int0 | |- |^| (/) = _V |
|
| 4 | 2 3 | eqtrdi | |- ( A = (/) -> |^| A = _V ) |
| 5 | 4 | adantl | |- ( ( U. A = |^| A /\ A = (/) ) -> |^| A = _V ) |
| 6 | unieq | |- ( A = (/) -> U. A = U. (/) ) |
|
| 7 | uni0 | |- U. (/) = (/) |
|
| 8 | 6 7 | eqtrdi | |- ( A = (/) -> U. A = (/) ) |
| 9 | eqeq1 | |- ( U. A = |^| A -> ( U. A = (/) <-> |^| A = (/) ) ) |
|
| 10 | 8 9 | imbitrid | |- ( U. A = |^| A -> ( A = (/) -> |^| A = (/) ) ) |
| 11 | 10 | imp | |- ( ( U. A = |^| A /\ A = (/) ) -> |^| A = (/) ) |
| 12 | 5 11 | eqtr3d | |- ( ( U. A = |^| A /\ A = (/) ) -> _V = (/) ) |
| 13 | 12 | ex | |- ( U. A = |^| A -> ( A = (/) -> _V = (/) ) ) |
| 14 | 13 | necon3d | |- ( U. A = |^| A -> ( _V =/= (/) -> A =/= (/) ) ) |
| 15 | 1 14 | mpi | |- ( U. A = |^| A -> A =/= (/) ) |
| 16 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 17 | 15 16 | sylib | |- ( U. A = |^| A -> E. x x e. A ) |
| 18 | vex | |- x e. _V |
|
| 19 | vex | |- y e. _V |
|
| 20 | 18 19 | prss | |- ( ( x e. A /\ y e. A ) <-> { x , y } C_ A ) |
| 21 | uniss | |- ( { x , y } C_ A -> U. { x , y } C_ U. A ) |
|
| 22 | 21 | adantl | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. { x , y } C_ U. A ) |
| 23 | simpl | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. A = |^| A ) |
|
| 24 | 22 23 | sseqtrd | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. { x , y } C_ |^| A ) |
| 25 | intss | |- ( { x , y } C_ A -> |^| A C_ |^| { x , y } ) |
|
| 26 | 25 | adantl | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> |^| A C_ |^| { x , y } ) |
| 27 | 24 26 | sstrd | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. { x , y } C_ |^| { x , y } ) |
| 28 | 18 19 | unipr | |- U. { x , y } = ( x u. y ) |
| 29 | 18 19 | intpr | |- |^| { x , y } = ( x i^i y ) |
| 30 | 27 28 29 | 3sstr3g | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> ( x u. y ) C_ ( x i^i y ) ) |
| 31 | inss1 | |- ( x i^i y ) C_ x |
|
| 32 | ssun1 | |- x C_ ( x u. y ) |
|
| 33 | 31 32 | sstri | |- ( x i^i y ) C_ ( x u. y ) |
| 34 | eqss | |- ( ( x u. y ) = ( x i^i y ) <-> ( ( x u. y ) C_ ( x i^i y ) /\ ( x i^i y ) C_ ( x u. y ) ) ) |
|
| 35 | uneqin | |- ( ( x u. y ) = ( x i^i y ) <-> x = y ) |
|
| 36 | 34 35 | bitr3i | |- ( ( ( x u. y ) C_ ( x i^i y ) /\ ( x i^i y ) C_ ( x u. y ) ) <-> x = y ) |
| 37 | 30 33 36 | sylanblc | |- ( ( U. A = |^| A /\ { x , y } C_ A ) -> x = y ) |
| 38 | 37 | ex | |- ( U. A = |^| A -> ( { x , y } C_ A -> x = y ) ) |
| 39 | 20 38 | biimtrid | |- ( U. A = |^| A -> ( ( x e. A /\ y e. A ) -> x = y ) ) |
| 40 | 39 | alrimivv | |- ( U. A = |^| A -> A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) |
| 41 | 17 40 | jca | |- ( U. A = |^| A -> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) ) |
| 42 | euabsn | |- ( E! x x e. A <-> E. x { x | x e. A } = { x } ) |
|
| 43 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 44 | 43 | eu4 | |- ( E! x x e. A <-> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) ) |
| 45 | abid2 | |- { x | x e. A } = A |
|
| 46 | 45 | eqeq1i | |- ( { x | x e. A } = { x } <-> A = { x } ) |
| 47 | 46 | exbii | |- ( E. x { x | x e. A } = { x } <-> E. x A = { x } ) |
| 48 | 42 44 47 | 3bitr3i | |- ( ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) <-> E. x A = { x } ) |
| 49 | 41 48 | sylib | |- ( U. A = |^| A -> E. x A = { x } ) |
| 50 | unisnv | |- U. { x } = x |
|
| 51 | unieq | |- ( A = { x } -> U. A = U. { x } ) |
|
| 52 | inteq | |- ( A = { x } -> |^| A = |^| { x } ) |
|
| 53 | 18 | intsn | |- |^| { x } = x |
| 54 | 52 53 | eqtrdi | |- ( A = { x } -> |^| A = x ) |
| 55 | 50 51 54 | 3eqtr4a | |- ( A = { x } -> U. A = |^| A ) |
| 56 | 55 | exlimiv | |- ( E. x A = { x } -> U. A = |^| A ) |
| 57 | 49 56 | impbii | |- ( U. A = |^| A <-> E. x A = { x } ) |