This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1 | ⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | ⊢ 1o = { ∅ } | |
| 2 | 1 | breq2i | ⊢ ( 𝐴 ≈ 1o ↔ 𝐴 ≈ { ∅ } ) |
| 3 | encv | ⊢ ( 𝐴 ≈ { ∅ } → ( 𝐴 ∈ V ∧ { ∅ } ∈ V ) ) | |
| 4 | breng | ⊢ ( ( 𝐴 ∈ V ∧ { ∅ } ∈ V ) → ( 𝐴 ≈ { ∅ } ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ { ∅ } ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ≈ { ∅ } → ( 𝐴 ≈ { ∅ } ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ { ∅ } ) ) |
| 6 | 5 | ibi | ⊢ ( 𝐴 ≈ { ∅ } → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ { ∅ } ) |
| 7 | 2 6 | sylbi | ⊢ ( 𝐴 ≈ 1o → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ { ∅ } ) |
| 8 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ { ∅ } → ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 ) | |
| 9 | f1ofo | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → ◡ 𝑓 : { ∅ } –onto→ 𝐴 ) | |
| 10 | forn | ⊢ ( ◡ 𝑓 : { ∅ } –onto→ 𝐴 → ran ◡ 𝑓 = 𝐴 ) | |
| 11 | 9 10 | syl | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → ran ◡ 𝑓 = 𝐴 ) |
| 12 | f1of | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → ◡ 𝑓 : { ∅ } ⟶ 𝐴 ) | |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | 13 | fsn2 | ⊢ ( ◡ 𝑓 : { ∅ } ⟶ 𝐴 ↔ ( ( ◡ 𝑓 ‘ ∅ ) ∈ 𝐴 ∧ ◡ 𝑓 = { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 } ) ) |
| 15 | 14 | simprbi | ⊢ ( ◡ 𝑓 : { ∅ } ⟶ 𝐴 → ◡ 𝑓 = { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 } ) |
| 16 | 12 15 | syl | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → ◡ 𝑓 = { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 } ) |
| 17 | 16 | rneqd | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → ran ◡ 𝑓 = ran { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 } ) |
| 18 | 13 | rnsnop | ⊢ ran { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 } = { ( ◡ 𝑓 ‘ ∅ ) } |
| 19 | 17 18 | eqtrdi | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → ran ◡ 𝑓 = { ( ◡ 𝑓 ‘ ∅ ) } ) |
| 20 | 11 19 | eqtr3d | ⊢ ( ◡ 𝑓 : { ∅ } –1-1-onto→ 𝐴 → 𝐴 = { ( ◡ 𝑓 ‘ ∅ ) } ) |
| 21 | fvex | ⊢ ( ◡ 𝑓 ‘ ∅ ) ∈ V | |
| 22 | sneq | ⊢ ( 𝑥 = ( ◡ 𝑓 ‘ ∅ ) → { 𝑥 } = { ( ◡ 𝑓 ‘ ∅ ) } ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑥 = ( ◡ 𝑓 ‘ ∅ ) → ( 𝐴 = { 𝑥 } ↔ 𝐴 = { ( ◡ 𝑓 ‘ ∅ ) } ) ) |
| 24 | 21 23 | spcev | ⊢ ( 𝐴 = { ( ◡ 𝑓 ‘ ∅ ) } → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 25 | 8 20 24 | 3syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ { ∅ } → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 26 | 25 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ { ∅ } → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 27 | 7 26 | syl | ⊢ ( 𝐴 ≈ 1o → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 28 | vex | ⊢ 𝑥 ∈ V | |
| 29 | 28 | ensn1 | ⊢ { 𝑥 } ≈ 1o |
| 30 | breq1 | ⊢ ( 𝐴 = { 𝑥 } → ( 𝐴 ≈ 1o ↔ { 𝑥 } ≈ 1o ) ) | |
| 31 | 29 30 | mpbiri | ⊢ ( 𝐴 = { 𝑥 } → 𝐴 ≈ 1o ) |
| 32 | 31 | exlimiv | ⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 ≈ 1o ) |
| 33 | 27 32 | impbii | ⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |