This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . The value of the function F is less than its value at a successor. (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unblem.2 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| Assertion | unblem3 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unblem.2 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| 2 | 1 | unblem2 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) |
| 3 | 2 | imp | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) |
| 4 | omsson | ⊢ ω ⊆ On | |
| 5 | sstr | ⊢ ( ( 𝐴 ⊆ ω ∧ ω ⊆ On ) → 𝐴 ⊆ On ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ⊆ ω → 𝐴 ⊆ On ) |
| 7 | ssel | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) | |
| 8 | 7 | anc2li | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝐴 ⊆ ω → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) ) |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) ) |
| 11 | 3 10 | mpd | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
| 12 | onmindif | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) → ( 𝐹 ‘ 𝑧 ) ∈ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
| 14 | unblem1 | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) | |
| 15 | 14 | ex | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) ) |
| 16 | 2 15 | syld | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) ) |
| 17 | suceq | ⊢ ( 𝑦 = 𝑥 → suc 𝑦 = suc 𝑥 ) | |
| 18 | 17 | difeq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc 𝑥 ) ) |
| 19 | 18 | inteqd | ⊢ ( 𝑦 = 𝑥 → ∩ ( 𝐴 ∖ suc 𝑦 ) = ∩ ( 𝐴 ∖ suc 𝑥 ) ) |
| 20 | suceq | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → suc 𝑦 = suc ( 𝐹 ‘ 𝑧 ) ) | |
| 21 | 20 | difeq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
| 22 | 21 | inteqd | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ∩ ( 𝐴 ∖ suc 𝑦 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
| 23 | 1 19 22 | frsucmpt2 | ⊢ ( ( 𝑧 ∈ ω ∧ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
| 24 | 23 | ex | ⊢ ( 𝑧 ∈ ω → ( ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 25 | 16 24 | sylcom | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 | 13 26 | eleqtrrd | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) |
| 28 | 27 | ex | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) ) |