This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of Suppes p. 151. See unbnn3 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unbnn | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ≈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg | ⊢ ( ω ∈ V → ( 𝐴 ⊆ ω → 𝐴 ≼ ω ) ) | |
| 2 | 1 | imp | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ) → 𝐴 ≼ ω ) |
| 3 | 2 | 3adant3 | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ≼ ω ) |
| 4 | simp1 | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ω ∈ V ) | |
| 5 | ssexg | ⊢ ( ( 𝐴 ⊆ ω ∧ ω ∈ V ) → 𝐴 ∈ V ) | |
| 6 | 5 | ancoms | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ) → 𝐴 ∈ V ) |
| 7 | 6 | 3adant3 | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ∈ V ) |
| 8 | eqid | ⊢ ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| 9 | 8 | unblem4 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) : ω –1-1→ 𝐴 ) |
| 10 | 9 | 3adant1 | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) : ω –1-1→ 𝐴 ) |
| 11 | f1dom2g | ⊢ ( ( ω ∈ V ∧ 𝐴 ∈ V ∧ ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) : ω –1-1→ 𝐴 ) → ω ≼ 𝐴 ) | |
| 12 | 4 7 10 11 | syl3anc | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ω ≼ 𝐴 ) |
| 13 | sbth | ⊢ ( ( 𝐴 ≼ ω ∧ ω ≼ 𝐴 ) → 𝐴 ≈ ω ) | |
| 14 | 3 12 13 | syl2anc | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ≈ ω ) |