This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . The function F maps the set of natural numbers one-to-one to the set of unbounded natural numbers A . (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unblem.2 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| Assertion | unblem4 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → 𝐹 : ω –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unblem.2 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| 2 | omsson | ⊢ ω ⊆ On | |
| 3 | sstr | ⊢ ( ( 𝐴 ⊆ ω ∧ ω ⊆ On ) → 𝐴 ⊆ On ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ⊆ ω → 𝐴 ⊆ On ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → 𝐴 ⊆ On ) |
| 6 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) Fn ω | |
| 7 | 1 | fneq1i | ⊢ ( 𝐹 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) Fn ω ) |
| 8 | 6 7 | mpbir | ⊢ 𝐹 Fn ω |
| 9 | 1 | unblem2 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) |
| 10 | 9 | ralrimiv | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ∀ 𝑧 ∈ ω ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) |
| 11 | ffnfv | ⊢ ( 𝐹 : ω ⟶ 𝐴 ↔ ( 𝐹 Fn ω ∧ ∀ 𝑧 ∈ ω ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) | |
| 12 | 11 | biimpri | ⊢ ( ( 𝐹 Fn ω ∧ ∀ 𝑧 ∈ ω ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) → 𝐹 : ω ⟶ 𝐴 ) |
| 13 | 8 10 12 | sylancr | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → 𝐹 : ω ⟶ 𝐴 ) |
| 14 | 1 | unblem3 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) ) |
| 15 | 14 | ralrimiv | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ∀ 𝑧 ∈ ω ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) |
| 16 | omsmo | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑧 ∈ ω ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) → 𝐹 : ω –1-1→ 𝐴 ) | |
| 17 | 5 13 15 16 | syl21anc | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → 𝐹 : ω –1-1→ 𝐴 ) |