This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . The value of the function F belongs to the unbounded set of natural numbers A . (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unblem.2 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| Assertion | unblem2 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unblem.2 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = ∅ → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ∅ ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑧 = ∅ → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ↔ ( 𝐹 ‘ ∅ ) ∈ 𝐴 ) ) |
| 4 | fveq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑢 ) ∈ 𝐴 ) ) |
| 6 | fveq2 | ⊢ ( 𝑧 = suc 𝑢 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ suc 𝑢 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑧 = suc 𝑢 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ↔ ( 𝐹 ‘ suc 𝑢 ) ∈ 𝐴 ) ) |
| 8 | omsson | ⊢ ω ⊆ On | |
| 9 | sstr | ⊢ ( ( 𝐴 ⊆ ω ∧ ω ⊆ On ) → 𝐴 ⊆ On ) | |
| 10 | 8 9 | mpan2 | ⊢ ( 𝐴 ⊆ ω → 𝐴 ⊆ On ) |
| 11 | peano1 | ⊢ ∅ ∈ ω | |
| 12 | eleq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ 𝑣 ↔ ∅ ∈ 𝑣 ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑤 = ∅ → ( ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ↔ ∃ 𝑣 ∈ 𝐴 ∅ ∈ 𝑣 ) ) |
| 14 | 13 | rspcv | ⊢ ( ∅ ∈ ω → ( ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 → ∃ 𝑣 ∈ 𝐴 ∅ ∈ 𝑣 ) ) |
| 15 | 11 14 | ax-mp | ⊢ ( ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 → ∃ 𝑣 ∈ 𝐴 ∅ ∈ 𝑣 ) |
| 16 | df-rex | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∅ ∈ 𝑣 ↔ ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∅ ∈ 𝑣 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 → ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∅ ∈ 𝑣 ) ) |
| 18 | exsimpl | ⊢ ( ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∅ ∈ 𝑣 ) → ∃ 𝑣 𝑣 ∈ 𝐴 ) | |
| 19 | 17 18 | syl | ⊢ ( ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 → ∃ 𝑣 𝑣 ∈ 𝐴 ) |
| 20 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ 𝐴 ) | |
| 21 | 19 20 | sylibr | ⊢ ( ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 → 𝐴 ≠ ∅ ) |
| 22 | onint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) | |
| 23 | 10 21 22 | syl2an | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ∩ 𝐴 ∈ 𝐴 ) |
| 24 | 1 | fveq1i | ⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) ‘ ∅ ) |
| 25 | fr0g | ⊢ ( ∩ 𝐴 ∈ 𝐴 → ( ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) ‘ ∅ ) = ∩ 𝐴 ) | |
| 26 | 24 25 | eqtr2id | ⊢ ( ∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 = ( 𝐹 ‘ ∅ ) ) |
| 27 | 26 | eleq1d | ⊢ ( ∩ 𝐴 ∈ 𝐴 → ( ∩ 𝐴 ∈ 𝐴 ↔ ( 𝐹 ‘ ∅ ) ∈ 𝐴 ) ) |
| 28 | 27 | ibi | ⊢ ( ∩ 𝐴 ∈ 𝐴 → ( 𝐹 ‘ ∅ ) ∈ 𝐴 ) |
| 29 | 23 28 | syl | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝐹 ‘ ∅ ) ∈ 𝐴 ) |
| 30 | unblem1 | ⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝐴 ) → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 ) | |
| 31 | suceq | ⊢ ( 𝑦 = 𝑥 → suc 𝑦 = suc 𝑥 ) | |
| 32 | 31 | difeq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc 𝑥 ) ) |
| 33 | 32 | inteqd | ⊢ ( 𝑦 = 𝑥 → ∩ ( 𝐴 ∖ suc 𝑦 ) = ∩ ( 𝐴 ∖ suc 𝑥 ) ) |
| 34 | suceq | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑢 ) → suc 𝑦 = suc ( 𝐹 ‘ 𝑢 ) ) | |
| 35 | 34 | difeq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑢 ) → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ) |
| 36 | 35 | inteqd | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑢 ) → ∩ ( 𝐴 ∖ suc 𝑦 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ) |
| 37 | 1 33 36 | frsucmpt2 | ⊢ ( ( 𝑢 ∈ ω ∧ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ suc 𝑢 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ) |
| 38 | 37 | eqcomd | ⊢ ( ( 𝑢 ∈ ω ∧ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 ) → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) = ( 𝐹 ‘ suc 𝑢 ) ) |
| 39 | 38 | eleq1d | ⊢ ( ( 𝑢 ∈ ω ∧ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 ) → ( ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 ↔ ( 𝐹 ‘ suc 𝑢 ) ∈ 𝐴 ) ) |
| 40 | 39 | ex | ⊢ ( 𝑢 ∈ ω → ( ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 → ( ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 ↔ ( 𝐹 ‘ suc 𝑢 ) ∈ 𝐴 ) ) ) |
| 41 | 40 | ibd | ⊢ ( 𝑢 ∈ ω → ( ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑢 ) ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑢 ) ∈ 𝐴 ) ) |
| 42 | 30 41 | syl5 | ⊢ ( 𝑢 ∈ ω → ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝐴 ) → ( 𝐹 ‘ suc 𝑢 ) ∈ 𝐴 ) ) |
| 43 | 42 | expd | ⊢ ( 𝑢 ∈ ω → ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑢 ) ∈ 𝐴 ) ) ) |
| 44 | 3 5 7 29 43 | finds2 | ⊢ ( 𝑧 ∈ ω → ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) |
| 45 | 44 | com12 | ⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) |