This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . The value of the function F is less than its value at a successor. (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unblem.2 | |- F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) |
|
| Assertion | unblem3 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. ( F ` suc z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unblem.2 | |- F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) |
|
| 2 | 1 | unblem2 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. A ) ) |
| 3 | 2 | imp | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ z e. _om ) -> ( F ` z ) e. A ) |
| 4 | omsson | |- _om C_ On |
|
| 5 | sstr | |- ( ( A C_ _om /\ _om C_ On ) -> A C_ On ) |
|
| 6 | 4 5 | mpan2 | |- ( A C_ _om -> A C_ On ) |
| 7 | ssel | |- ( A C_ On -> ( ( F ` z ) e. A -> ( F ` z ) e. On ) ) |
|
| 8 | 7 | anc2li | |- ( A C_ On -> ( ( F ` z ) e. A -> ( A C_ On /\ ( F ` z ) e. On ) ) ) |
| 9 | 6 8 | syl | |- ( A C_ _om -> ( ( F ` z ) e. A -> ( A C_ On /\ ( F ` z ) e. On ) ) ) |
| 10 | 9 | ad2antrr | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ z e. _om ) -> ( ( F ` z ) e. A -> ( A C_ On /\ ( F ` z ) e. On ) ) ) |
| 11 | 3 10 | mpd | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ z e. _om ) -> ( A C_ On /\ ( F ` z ) e. On ) ) |
| 12 | onmindif | |- ( ( A C_ On /\ ( F ` z ) e. On ) -> ( F ` z ) e. |^| ( A \ suc ( F ` z ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ z e. _om ) -> ( F ` z ) e. |^| ( A \ suc ( F ` z ) ) ) |
| 14 | unblem1 | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ ( F ` z ) e. A ) -> |^| ( A \ suc ( F ` z ) ) e. A ) |
|
| 15 | 14 | ex | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( ( F ` z ) e. A -> |^| ( A \ suc ( F ` z ) ) e. A ) ) |
| 16 | 2 15 | syld | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> |^| ( A \ suc ( F ` z ) ) e. A ) ) |
| 17 | suceq | |- ( y = x -> suc y = suc x ) |
|
| 18 | 17 | difeq2d | |- ( y = x -> ( A \ suc y ) = ( A \ suc x ) ) |
| 19 | 18 | inteqd | |- ( y = x -> |^| ( A \ suc y ) = |^| ( A \ suc x ) ) |
| 20 | suceq | |- ( y = ( F ` z ) -> suc y = suc ( F ` z ) ) |
|
| 21 | 20 | difeq2d | |- ( y = ( F ` z ) -> ( A \ suc y ) = ( A \ suc ( F ` z ) ) ) |
| 22 | 21 | inteqd | |- ( y = ( F ` z ) -> |^| ( A \ suc y ) = |^| ( A \ suc ( F ` z ) ) ) |
| 23 | 1 19 22 | frsucmpt2 | |- ( ( z e. _om /\ |^| ( A \ suc ( F ` z ) ) e. A ) -> ( F ` suc z ) = |^| ( A \ suc ( F ` z ) ) ) |
| 24 | 23 | ex | |- ( z e. _om -> ( |^| ( A \ suc ( F ` z ) ) e. A -> ( F ` suc z ) = |^| ( A \ suc ( F ` z ) ) ) ) |
| 25 | 16 24 | sylcom | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` suc z ) = |^| ( A \ suc ( F ` z ) ) ) ) |
| 26 | 25 | imp | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ z e. _om ) -> ( F ` suc z ) = |^| ( A \ suc ( F ` z ) ) ) |
| 27 | 13 26 | eleqtrrd | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ z e. _om ) -> ( F ` z ) e. ( F ` suc z ) ) |
| 28 | 27 | ex | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. ( F ` suc z ) ) ) |