This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unblem1 | ⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson | ⊢ ω ⊆ On | |
| 2 | sstr | ⊢ ( ( 𝐵 ⊆ ω ∧ ω ⊆ On ) → 𝐵 ⊆ On ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐵 ⊆ ω → 𝐵 ⊆ On ) |
| 4 | 3 | ssdifssd | ⊢ ( 𝐵 ⊆ ω → ( 𝐵 ∖ suc 𝐴 ) ⊆ On ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∖ suc 𝐴 ) ⊆ On ) |
| 6 | ssel | ⊢ ( 𝐵 ⊆ ω → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ω ) ) | |
| 7 | peano2b | ⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) | |
| 8 | 6 7 | imbitrdi | ⊢ ( 𝐵 ⊆ ω → ( 𝐴 ∈ 𝐵 → suc 𝐴 ∈ ω ) ) |
| 9 | eleq1 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝑥 ∈ 𝑦 ↔ suc 𝐴 ∈ 𝑦 ) ) | |
| 10 | 9 | rexbidv | ⊢ ( 𝑥 = suc 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 suc 𝐴 ∈ 𝑦 ) ) |
| 11 | 10 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ suc 𝐴 ∈ ω ) → ∃ 𝑦 ∈ 𝐵 suc 𝐴 ∈ 𝑦 ) |
| 12 | ssel | ⊢ ( 𝐵 ⊆ ω → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ω ) ) | |
| 13 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 14 | ordn2lp | ⊢ ( Ord 𝑦 → ¬ ( 𝑦 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝑦 ) ) | |
| 15 | imnan | ⊢ ( ( 𝑦 ∈ suc 𝐴 → ¬ suc 𝐴 ∈ 𝑦 ) ↔ ¬ ( 𝑦 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝑦 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( Ord 𝑦 → ( 𝑦 ∈ suc 𝐴 → ¬ suc 𝐴 ∈ 𝑦 ) ) |
| 17 | 16 | con2d | ⊢ ( Ord 𝑦 → ( suc 𝐴 ∈ 𝑦 → ¬ 𝑦 ∈ suc 𝐴 ) ) |
| 18 | 13 17 | syl | ⊢ ( 𝑦 ∈ ω → ( suc 𝐴 ∈ 𝑦 → ¬ 𝑦 ∈ suc 𝐴 ) ) |
| 19 | 12 18 | syl6 | ⊢ ( 𝐵 ⊆ ω → ( 𝑦 ∈ 𝐵 → ( suc 𝐴 ∈ 𝑦 → ¬ 𝑦 ∈ suc 𝐴 ) ) ) |
| 20 | 19 | imdistand | ⊢ ( 𝐵 ⊆ ω → ( ( 𝑦 ∈ 𝐵 ∧ suc 𝐴 ∈ 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴 ) ) ) |
| 21 | eldif | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴 ) ) | |
| 22 | ne0i | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ suc 𝐴 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) | |
| 23 | 21 22 | sylbir | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) |
| 24 | 20 23 | syl6 | ⊢ ( 𝐵 ⊆ ω → ( ( 𝑦 ∈ 𝐵 ∧ suc 𝐴 ∈ 𝑦 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
| 25 | 24 | expd | ⊢ ( 𝐵 ⊆ ω → ( 𝑦 ∈ 𝐵 → ( suc 𝐴 ∈ 𝑦 → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) ) |
| 26 | 25 | rexlimdv | ⊢ ( 𝐵 ⊆ ω → ( ∃ 𝑦 ∈ 𝐵 suc 𝐴 ∈ 𝑦 → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
| 27 | 11 26 | syl5 | ⊢ ( 𝐵 ⊆ ω → ( ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ suc 𝐴 ∈ ω ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
| 28 | 8 27 | sylan2d | ⊢ ( 𝐵 ⊆ ω → ( ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
| 29 | 28 | impl | ⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) |
| 30 | onint | ⊢ ( ( ( 𝐵 ∖ suc 𝐴 ) ⊆ On ∧ ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ ( 𝐵 ∖ suc 𝐴 ) ) | |
| 31 | 5 29 30 | syl2anc | ⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ ( 𝐵 ∖ suc 𝐴 ) ) |
| 32 | 31 | eldifad | ⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ 𝐵 ) |