This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . The value of the function F belongs to the unbounded set of natural numbers A . (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unblem.2 | |- F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) |
|
| Assertion | unblem2 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unblem.2 | |- F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) |
|
| 2 | fveq2 | |- ( z = (/) -> ( F ` z ) = ( F ` (/) ) ) |
|
| 3 | 2 | eleq1d | |- ( z = (/) -> ( ( F ` z ) e. A <-> ( F ` (/) ) e. A ) ) |
| 4 | fveq2 | |- ( z = u -> ( F ` z ) = ( F ` u ) ) |
|
| 5 | 4 | eleq1d | |- ( z = u -> ( ( F ` z ) e. A <-> ( F ` u ) e. A ) ) |
| 6 | fveq2 | |- ( z = suc u -> ( F ` z ) = ( F ` suc u ) ) |
|
| 7 | 6 | eleq1d | |- ( z = suc u -> ( ( F ` z ) e. A <-> ( F ` suc u ) e. A ) ) |
| 8 | omsson | |- _om C_ On |
|
| 9 | sstr | |- ( ( A C_ _om /\ _om C_ On ) -> A C_ On ) |
|
| 10 | 8 9 | mpan2 | |- ( A C_ _om -> A C_ On ) |
| 11 | peano1 | |- (/) e. _om |
|
| 12 | eleq1 | |- ( w = (/) -> ( w e. v <-> (/) e. v ) ) |
|
| 13 | 12 | rexbidv | |- ( w = (/) -> ( E. v e. A w e. v <-> E. v e. A (/) e. v ) ) |
| 14 | 13 | rspcv | |- ( (/) e. _om -> ( A. w e. _om E. v e. A w e. v -> E. v e. A (/) e. v ) ) |
| 15 | 11 14 | ax-mp | |- ( A. w e. _om E. v e. A w e. v -> E. v e. A (/) e. v ) |
| 16 | df-rex | |- ( E. v e. A (/) e. v <-> E. v ( v e. A /\ (/) e. v ) ) |
|
| 17 | 15 16 | sylib | |- ( A. w e. _om E. v e. A w e. v -> E. v ( v e. A /\ (/) e. v ) ) |
| 18 | exsimpl | |- ( E. v ( v e. A /\ (/) e. v ) -> E. v v e. A ) |
|
| 19 | 17 18 | syl | |- ( A. w e. _om E. v e. A w e. v -> E. v v e. A ) |
| 20 | n0 | |- ( A =/= (/) <-> E. v v e. A ) |
|
| 21 | 19 20 | sylibr | |- ( A. w e. _om E. v e. A w e. v -> A =/= (/) ) |
| 22 | onint | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
|
| 23 | 10 21 22 | syl2an | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> |^| A e. A ) |
| 24 | 1 | fveq1i | |- ( F ` (/) ) = ( ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) ` (/) ) |
| 25 | fr0g | |- ( |^| A e. A -> ( ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) ` (/) ) = |^| A ) |
|
| 26 | 24 25 | eqtr2id | |- ( |^| A e. A -> |^| A = ( F ` (/) ) ) |
| 27 | 26 | eleq1d | |- ( |^| A e. A -> ( |^| A e. A <-> ( F ` (/) ) e. A ) ) |
| 28 | 27 | ibi | |- ( |^| A e. A -> ( F ` (/) ) e. A ) |
| 29 | 23 28 | syl | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( F ` (/) ) e. A ) |
| 30 | unblem1 | |- ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ ( F ` u ) e. A ) -> |^| ( A \ suc ( F ` u ) ) e. A ) |
|
| 31 | suceq | |- ( y = x -> suc y = suc x ) |
|
| 32 | 31 | difeq2d | |- ( y = x -> ( A \ suc y ) = ( A \ suc x ) ) |
| 33 | 32 | inteqd | |- ( y = x -> |^| ( A \ suc y ) = |^| ( A \ suc x ) ) |
| 34 | suceq | |- ( y = ( F ` u ) -> suc y = suc ( F ` u ) ) |
|
| 35 | 34 | difeq2d | |- ( y = ( F ` u ) -> ( A \ suc y ) = ( A \ suc ( F ` u ) ) ) |
| 36 | 35 | inteqd | |- ( y = ( F ` u ) -> |^| ( A \ suc y ) = |^| ( A \ suc ( F ` u ) ) ) |
| 37 | 1 33 36 | frsucmpt2 | |- ( ( u e. _om /\ |^| ( A \ suc ( F ` u ) ) e. A ) -> ( F ` suc u ) = |^| ( A \ suc ( F ` u ) ) ) |
| 38 | 37 | eqcomd | |- ( ( u e. _om /\ |^| ( A \ suc ( F ` u ) ) e. A ) -> |^| ( A \ suc ( F ` u ) ) = ( F ` suc u ) ) |
| 39 | 38 | eleq1d | |- ( ( u e. _om /\ |^| ( A \ suc ( F ` u ) ) e. A ) -> ( |^| ( A \ suc ( F ` u ) ) e. A <-> ( F ` suc u ) e. A ) ) |
| 40 | 39 | ex | |- ( u e. _om -> ( |^| ( A \ suc ( F ` u ) ) e. A -> ( |^| ( A \ suc ( F ` u ) ) e. A <-> ( F ` suc u ) e. A ) ) ) |
| 41 | 40 | ibd | |- ( u e. _om -> ( |^| ( A \ suc ( F ` u ) ) e. A -> ( F ` suc u ) e. A ) ) |
| 42 | 30 41 | syl5 | |- ( u e. _om -> ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ ( F ` u ) e. A ) -> ( F ` suc u ) e. A ) ) |
| 43 | 42 | expd | |- ( u e. _om -> ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( ( F ` u ) e. A -> ( F ` suc u ) e. A ) ) ) |
| 44 | 3 5 7 29 43 | finds2 | |- ( z e. _om -> ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( F ` z ) e. A ) ) |
| 45 | 44 | com12 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. A ) ) |