This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018) (Revised by AV, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrclwwlkge2 | ⊢ ( 𝐺 ∈ UMGraph → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | clwwlkbp | ⊢ ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) |
| 4 | lencl | ⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 7 | hasheq0 | ⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) ) | |
| 8 | 7 | bicomd | ⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 = ∅ ↔ ( ♯ ‘ 𝑃 ) = 0 ) ) |
| 9 | 8 | necon3bid | ⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ ↔ ( ♯ ‘ 𝑃 ) ≠ 0 ) ) |
| 10 | 9 | biimpd | ⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ → ( ♯ ‘ 𝑃 ) ≠ 0 ) ) |
| 11 | 10 | a1i | ⊢ ( 𝐺 ∈ V → ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ → ( ♯ ‘ 𝑃 ) ≠ 0 ) ) ) |
| 12 | 11 | 3imp | ⊢ ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 0 ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 0 ) |
| 14 | clwwlk1loop | ⊢ ( ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = 1 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 15 | 14 | expcom | ⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 16 | eqid | ⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) | |
| 17 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 18 | 17 | umgredgne | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 19 | eqneqall | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 0 ) → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) | |
| 20 | 16 18 19 | mpsyl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
| 21 | 20 | expcom | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝐺 ∈ UMGraph → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) |
| 22 | 15 21 | syl6 | ⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ UMGraph → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) ) |
| 23 | 22 | com23 | ⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝐺 ∈ UMGraph → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) ) |
| 24 | 23 | imp4c | ⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
| 25 | neqne | ⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 1 → ( ♯ ‘ 𝑃 ) ≠ 1 ) | |
| 26 | 25 | a1d | ⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 1 → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
| 27 | 24 26 | pm2.61i | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) |
| 28 | 6 13 27 | 3jca | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ∧ ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
| 29 | 3 28 | mpdan | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ∧ ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
| 30 | nn0n0n1ge2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ∧ ( ♯ ‘ 𝑃 ) ≠ 1 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 32 | 31 | ex | ⊢ ( 𝐺 ∈ UMGraph → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |