This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018) (Revised by AV, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrclwwlkge2 | |- ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> 2 <_ ( # ` P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | clwwlkbp | |- ( P e. ( ClWWalks ` G ) -> ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) |
| 3 | 2 | adantl | |- ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) |
| 4 | lencl | |- ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. NN0 ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) e. NN0 ) |
| 6 | 5 | adantl | |- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) e. NN0 ) |
| 7 | hasheq0 | |- ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) = 0 <-> P = (/) ) ) |
|
| 8 | 7 | bicomd | |- ( P e. Word ( Vtx ` G ) -> ( P = (/) <-> ( # ` P ) = 0 ) ) |
| 9 | 8 | necon3bid | |- ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) =/= 0 ) ) |
| 10 | 9 | biimpd | |- ( P e. Word ( Vtx ` G ) -> ( P =/= (/) -> ( # ` P ) =/= 0 ) ) |
| 11 | 10 | a1i | |- ( G e. _V -> ( P e. Word ( Vtx ` G ) -> ( P =/= (/) -> ( # ` P ) =/= 0 ) ) ) |
| 12 | 11 | 3imp | |- ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 0 ) |
| 13 | 12 | adantl | |- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 0 ) |
| 14 | clwwlk1loop | |- ( ( P e. ( ClWWalks ` G ) /\ ( # ` P ) = 1 ) -> { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
|
| 15 | 14 | expcom | |- ( ( # ` P ) = 1 -> ( P e. ( ClWWalks ` G ) -> { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| 16 | eqid | |- ( P ` 0 ) = ( P ` 0 ) |
|
| 17 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 18 | 17 | umgredgne | |- ( ( G e. UMGraph /\ { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( P ` 0 ) =/= ( P ` 0 ) ) |
| 19 | eqneqall | |- ( ( P ` 0 ) = ( P ` 0 ) -> ( ( P ` 0 ) =/= ( P ` 0 ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) |
|
| 20 | 16 18 19 | mpsyl | |- ( ( G e. UMGraph /\ { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) |
| 21 | 20 | expcom | |- ( { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) -> ( G e. UMGraph -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) |
| 22 | 15 21 | syl6 | |- ( ( # ` P ) = 1 -> ( P e. ( ClWWalks ` G ) -> ( G e. UMGraph -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) ) |
| 23 | 22 | com23 | |- ( ( # ` P ) = 1 -> ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) ) |
| 24 | 23 | imp4c | |- ( ( # ` P ) = 1 -> ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) ) |
| 25 | neqne | |- ( -. ( # ` P ) = 1 -> ( # ` P ) =/= 1 ) |
|
| 26 | 25 | a1d | |- ( -. ( # ` P ) = 1 -> ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) ) |
| 27 | 24 26 | pm2.61i | |- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) |
| 28 | 6 13 27 | 3jca | |- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) ) |
| 29 | 3 28 | mpdan | |- ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) ) |
| 30 | nn0n0n1ge2 | |- ( ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) -> 2 <_ ( # ` P ) ) |
|
| 31 | 29 30 | syl | |- ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> 2 <_ ( # ` P ) ) |
| 32 | 31 | ex | |- ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> 2 <_ ( # ` P ) ) ) |