This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk of length 1 is a loop. See also clwlkl1loop . (Contributed by AV, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlk1loop | ⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | isclwwlk | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 4 | lsw1 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 0 ) ) | |
| 5 | 4 | preq1d | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ) |
| 6 | 5 | eleq1d | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 7 | 6 | biimpd | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 8 | 7 | ex | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 1 → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 9 | 8 | com23 | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 1 → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 1 → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 11 | 10 | imp | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑊 ) = 1 → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 12 | 11 | 3adant2 | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑊 ) = 1 → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 13 | 3 12 | sylbi | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 1 → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |