This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0n0n1ge2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 2 | 1cnd | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 3 | 1 2 2 | subsub4d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) − 1 ) = ( 𝑁 − ( 1 + 1 ) ) ) |
| 4 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 5 | 4 | oveq2i | ⊢ ( 𝑁 − ( 1 + 1 ) ) = ( 𝑁 − 2 ) |
| 6 | 3 5 | eqtr2di | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 2 ) = ( ( 𝑁 − 1 ) − 1 ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 − 2 ) = ( ( 𝑁 − 1 ) − 1 ) ) |
| 8 | 3simpa | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) | |
| 9 | elnnne0 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 𝑁 ∈ ℕ ) |
| 11 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 13 | 1 2 | subeq0ad | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) = 0 ↔ 𝑁 = 1 ) ) |
| 14 | 13 | biimpd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) = 0 → 𝑁 = 1 ) ) |
| 15 | 14 | necon3d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≠ 1 → ( 𝑁 − 1 ) ≠ 0 ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 − 1 ) ≠ 0 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 − 1 ) ≠ 0 ) |
| 18 | elnnne0 | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ ↔ ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ≠ 0 ) ) | |
| 19 | 12 17 18 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 20 | nnm1nn0 | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( ( 𝑁 − 1 ) − 1 ) ∈ ℕ0 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( ( 𝑁 − 1 ) − 1 ) ∈ ℕ0 ) |
| 22 | 7 21 | eqeltrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 𝑁 − 2 ) ∈ ℕ0 ) |
| 23 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 24 | 23 | jctl | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 26 | nn0sub | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 2 ≤ 𝑁 ↔ ( 𝑁 − 2 ) ∈ ℕ0 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ( 2 ≤ 𝑁 ↔ ( 𝑁 − 2 ) ∈ ℕ0 ) ) |
| 28 | 22 27 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |