This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlkclwwlklem2a1 | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 2 | nn0cn | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℂ ) | |
| 3 | peano2cnm | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℂ ) | |
| 4 | 3 | subid1d | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) = ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ) |
| 6 | sub1m1 | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 7 | 5 6 | eqtrd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 8 | 1 2 7 | 3syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 11 | 10 | raleqdv | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 12 | 11 | biimpcd | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) → ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) → ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 15 | 14 | impcom | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) |
| 16 | lsw | ⊢ ( 𝑃 ∈ Word 𝑉 → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 17 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 18 | 17 | a1i | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 2 − 1 ) = 1 ) |
| 19 | 18 | eqcomd | ⊢ ( 𝑃 ∈ Word 𝑉 → 1 = ( 2 − 1 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) ) |
| 21 | 1 2 | syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 22 | 2cnd | ⊢ ( 𝑃 ∈ Word 𝑉 → 2 ∈ ℂ ) | |
| 23 | 1cnd | ⊢ ( 𝑃 ∈ Word 𝑉 → 1 ∈ ℂ ) | |
| 24 | 21 22 23 | subsubd | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 27 | 16 26 | eqtrd | ⊢ ( 𝑃 ∈ Word 𝑉 → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 30 | eqeq1 | ⊢ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) ) |
| 32 | 29 31 | mpbid | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 33 | 32 | preq2d | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 34 | 33 | eleq1d | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) |
| 35 | 34 | biimpd | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) |
| 36 | 35 | ex | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) ) |
| 37 | 36 | com13 | ⊢ ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) → ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) |
| 40 | 39 | impcom | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) |
| 41 | ovexd | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ V ) | |
| 42 | fveq2 | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 43 | fvoveq1 | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) | |
| 44 | 42 43 | preq12d | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 45 | 44 | eleq1d | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) |
| 46 | 45 | ralunsn | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ V → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) ) |
| 47 | 41 46 | syl | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ∈ ran 𝐸 ) ) ) |
| 48 | 15 40 47 | mpbir2and | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → ∀ 𝑖 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) |
| 49 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 50 | 49 | a1i | ⊢ ( 𝑃 ∈ Word 𝑉 → 1 = ( 2 − 1 ) ) |
| 51 | 50 | oveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) ) |
| 52 | 51 24 | eqtrd | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 53 | 52 | oveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ..^ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ..^ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 55 | nn0re | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) | |
| 56 | 2re | ⊢ 2 ∈ ℝ | |
| 57 | 56 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 58 | 55 57 | subge0d | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 59 | 58 | biimprd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 60 | nn0z | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) | |
| 61 | 2z | ⊢ 2 ∈ ℤ | |
| 62 | 61 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℤ ) |
| 63 | 60 62 | zsubcld | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 64 | 59 63 | jctild | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 65 | 1 64 | syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 66 | 65 | imp | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 67 | elnn0z | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ0 ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 68 | 66 67 | sylibr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ0 ) |
| 69 | elnn0uz | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 70 | 68 69 | sylib | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 71 | fzosplitsn | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 0 ..^ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) ) |
| 73 | 54 72 | eqtrd | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∪ { ( ( ♯ ‘ 𝑃 ) − 2 ) } ) ) |
| 75 | 48 74 | raleqtrrdv | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) |
| 76 | 75 | ex | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |