This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmres.z | |- Z = ( ZZ>= ` M ) |
|
| ulmres.w | |- W = ( ZZ>= ` N ) |
||
| ulmres.m | |- ( ph -> N e. Z ) |
||
| ulmres.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| Assertion | ulmres | |- ( ph -> ( F ( ~~>u ` S ) G <-> ( F |` W ) ( ~~>u ` S ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmres.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulmres.w | |- W = ( ZZ>= ` N ) |
|
| 3 | ulmres.m | |- ( ph -> N e. Z ) |
|
| 4 | ulmres.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 5 | ulmscl | |- ( F ( ~~>u ` S ) G -> S e. _V ) |
|
| 6 | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 7 | 5 6 | jca | |- ( F ( ~~>u ` S ) G -> ( S e. _V /\ G : S --> CC ) ) |
| 8 | 7 | a1i | |- ( ph -> ( F ( ~~>u ` S ) G -> ( S e. _V /\ G : S --> CC ) ) ) |
| 9 | ulmscl | |- ( ( F |` W ) ( ~~>u ` S ) G -> S e. _V ) |
|
| 10 | ulmcl | |- ( ( F |` W ) ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 11 | 9 10 | jca | |- ( ( F |` W ) ( ~~>u ` S ) G -> ( S e. _V /\ G : S --> CC ) ) |
| 12 | 11 | a1i | |- ( ph -> ( ( F |` W ) ( ~~>u ` S ) G -> ( S e. _V /\ G : S --> CC ) ) ) |
| 13 | 3 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> N e. ( ZZ>= ` M ) ) |
| 15 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> M e. ZZ ) |
| 17 | 1 | rexuz3 | |- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 18 | 16 17 | syl | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 19 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 20 | 14 19 | syl | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> N e. ZZ ) |
| 21 | 2 | rexuz3 | |- ( N e. ZZ -> ( E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 22 | 20 21 | syl | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 23 | 18 22 | bitr4d | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r <-> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 24 | 23 | ralbidv | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( A. r e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r <-> A. r e. RR+ E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 25 | 4 | adantr | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> F : Z --> ( CC ^m S ) ) |
| 26 | eqidd | |- ( ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` z ) ) |
|
| 27 | eqidd | |- ( ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
|
| 28 | simprr | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> G : S --> CC ) |
|
| 29 | simprl | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> S e. _V ) |
|
| 30 | 1 16 25 26 27 28 29 | ulm2 | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( F ( ~~>u ` S ) G <-> A. r e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 31 | uzss | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
|
| 32 | 14 31 | syl | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 33 | 32 2 1 | 3sstr4g | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> W C_ Z ) |
| 34 | 25 33 | fssresd | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( F |` W ) : W --> ( CC ^m S ) ) |
| 35 | fvres | |- ( k e. W -> ( ( F |` W ) ` k ) = ( F ` k ) ) |
|
| 36 | 35 | ad2antrl | |- ( ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) /\ ( k e. W /\ z e. S ) ) -> ( ( F |` W ) ` k ) = ( F ` k ) ) |
| 37 | 36 | fveq1d | |- ( ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) /\ ( k e. W /\ z e. S ) ) -> ( ( ( F |` W ) ` k ) ` z ) = ( ( F ` k ) ` z ) ) |
| 38 | 2 20 34 37 27 28 29 | ulm2 | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( ( F |` W ) ( ~~>u ` S ) G <-> A. r e. RR+ E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < r ) ) |
| 39 | 24 30 38 | 3bitr4d | |- ( ( ph /\ ( S e. _V /\ G : S --> CC ) ) -> ( F ( ~~>u ` S ) G <-> ( F |` W ) ( ~~>u ` S ) G ) ) |
| 40 | 39 | ex | |- ( ph -> ( ( S e. _V /\ G : S --> CC ) -> ( F ( ~~>u ` S ) G <-> ( F |` W ) ( ~~>u ` S ) G ) ) ) |
| 41 | 8 12 40 | pm5.21ndd | |- ( ph -> ( F ( ~~>u ` S ) G <-> ( F |` W ) ( ~~>u ` S ) G ) ) |