This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a sequence of differentiable functions on X which converge pointwise to G , and the derivatives of F ( n ) converge uniformly to H , then G is differentiable with derivative H . (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmdv.z | |- Z = ( ZZ>= ` M ) |
|
| ulmdv.s | |- ( ph -> S e. { RR , CC } ) |
||
| ulmdv.m | |- ( ph -> M e. ZZ ) |
||
| ulmdv.f | |- ( ph -> F : Z --> ( CC ^m X ) ) |
||
| ulmdv.g | |- ( ph -> G : X --> CC ) |
||
| ulmdv.l | |- ( ( ph /\ z e. X ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
||
| ulmdv.u | |- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H ) |
||
| Assertion | ulmdv | |- ( ph -> ( S _D G ) = H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmdv.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulmdv.s | |- ( ph -> S e. { RR , CC } ) |
|
| 3 | ulmdv.m | |- ( ph -> M e. ZZ ) |
|
| 4 | ulmdv.f | |- ( ph -> F : Z --> ( CC ^m X ) ) |
|
| 5 | ulmdv.g | |- ( ph -> G : X --> CC ) |
|
| 6 | ulmdv.l | |- ( ( ph /\ z e. X ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
|
| 7 | ulmdv.u | |- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H ) |
|
| 8 | dvfg | |- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
|
| 9 | 2 8 | syl | |- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 10 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 11 | 2 10 | syl | |- ( ph -> S C_ CC ) |
| 12 | biidd | |- ( k = M -> ( X C_ S <-> X C_ S ) ) |
|
| 13 | 1 2 3 4 5 6 7 | ulmdvlem2 | |- ( ( ph /\ k e. Z ) -> dom ( S _D ( F ` k ) ) = X ) |
| 14 | dvbsss | |- dom ( S _D ( F ` k ) ) C_ S |
|
| 15 | 13 14 | eqsstrrdi | |- ( ( ph /\ k e. Z ) -> X C_ S ) |
| 16 | 15 | ralrimiva | |- ( ph -> A. k e. Z X C_ S ) |
| 17 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 18 | 3 17 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 19 | 18 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 20 | 12 16 19 | rspcdva | |- ( ph -> X C_ S ) |
| 21 | 11 5 20 | dvbss | |- ( ph -> dom ( S _D G ) C_ X ) |
| 22 | 1 2 3 4 5 6 7 | ulmdvlem3 | |- ( ( ph /\ z e. X ) -> z ( S _D G ) ( H ` z ) ) |
| 23 | vex | |- z e. _V |
|
| 24 | fvex | |- ( H ` z ) e. _V |
|
| 25 | 23 24 | breldm | |- ( z ( S _D G ) ( H ` z ) -> z e. dom ( S _D G ) ) |
| 26 | 22 25 | syl | |- ( ( ph /\ z e. X ) -> z e. dom ( S _D G ) ) |
| 27 | 21 26 | eqelssd | |- ( ph -> dom ( S _D G ) = X ) |
| 28 | 27 | feq2d | |- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
| 29 | 9 28 | mpbid | |- ( ph -> ( S _D G ) : X --> CC ) |
| 30 | 29 | ffnd | |- ( ph -> ( S _D G ) Fn X ) |
| 31 | ulmcl | |- ( ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H -> H : X --> CC ) |
|
| 32 | 7 31 | syl | |- ( ph -> H : X --> CC ) |
| 33 | 32 | ffnd | |- ( ph -> H Fn X ) |
| 34 | 9 | ffund | |- ( ph -> Fun ( S _D G ) ) |
| 35 | 34 | adantr | |- ( ( ph /\ z e. X ) -> Fun ( S _D G ) ) |
| 36 | funbrfv | |- ( Fun ( S _D G ) -> ( z ( S _D G ) ( H ` z ) -> ( ( S _D G ) ` z ) = ( H ` z ) ) ) |
|
| 37 | 35 22 36 | sylc | |- ( ( ph /\ z e. X ) -> ( ( S _D G ) ` z ) = ( H ` z ) ) |
| 38 | 30 33 37 | eqfnfvd | |- ( ph -> ( S _D G ) = H ) |