This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between graphs preserves edges, i.e. there is an edge in one graph connecting vertices iff there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrimedgi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| uhgrimedgi.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | ||
| Assertion | uhgrimedg | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐾 ∈ 𝐸 ↔ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimedgi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | uhgrimedgi.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | |
| 3 | simp1 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) | |
| 4 | simp2 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 5 | 4 | anim1i | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) ) |
| 6 | 1 2 | uhgrimedgi | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |
| 7 | 3 5 6 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |
| 8 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 10 | 8 9 | grimf1o | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 11 | f1of1 | ⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 14 | simp3 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) | |
| 15 | 13 14 | jca | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 17 | f1imacnv | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) = 𝐾 ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) = 𝐾 ) |
| 19 | pm3.22 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) |
| 21 | simpl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ∈ UHGraph ) | |
| 22 | 21 | anim1i | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
| 24 | grimcnv | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ) ) | |
| 25 | 24 | imp | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
| 26 | 23 25 | syl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
| 27 | 26 | anim1i | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 28 | 2 1 | uhgrimedgi | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ ( ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) ∈ 𝐸 ) |
| 29 | 20 27 28 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) ∈ 𝐸 ) |
| 30 | 18 29 | eqeltrrd | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → 𝐾 ∈ 𝐸 ) |
| 31 | 7 30 | impbida | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐾 ∈ 𝐸 ↔ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |