This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between graphs preserves edges, i.e. there is an edge in one graph connecting vertices iff there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrimedgi.e | |- E = ( Edg ` G ) |
|
| uhgrimedgi.d | |- D = ( Edg ` H ) |
||
| Assertion | uhgrimedg | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( K e. E <-> ( F " K ) e. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimedgi.e | |- E = ( Edg ` G ) |
|
| 2 | uhgrimedgi.d | |- D = ( Edg ` H ) |
|
| 3 | simp1 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
|
| 4 | simp2 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> F e. ( G GraphIso H ) ) |
|
| 5 | 4 | anim1i | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ K e. E ) -> ( F e. ( G GraphIso H ) /\ K e. E ) ) |
| 6 | 1 2 | uhgrimedgi | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D ) |
| 7 | 3 5 6 | syl2an2r | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ K e. E ) -> ( F " K ) e. D ) |
| 8 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 9 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 10 | 8 9 | grimf1o | |- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 11 | f1of1 | |- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
|
| 12 | 10 11 | syl | |- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 14 | simp3 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> K C_ ( Vtx ` G ) ) |
|
| 15 | 13 14 | jca | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ K C_ ( Vtx ` G ) ) ) |
| 16 | 15 | adantr | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ K C_ ( Vtx ` G ) ) ) |
| 17 | f1imacnv | |- ( ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ K C_ ( Vtx ` G ) ) -> ( `' F " ( F " K ) ) = K ) |
|
| 18 | 16 17 | syl | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( `' F " ( F " K ) ) = K ) |
| 19 | pm3.22 | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( H e. UHGraph /\ G e. UHGraph ) ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( H e. UHGraph /\ G e. UHGraph ) ) |
| 21 | simpl | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> G e. UHGraph ) |
|
| 22 | 21 | anim1i | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) -> ( G e. UHGraph /\ F e. ( G GraphIso H ) ) ) |
| 23 | 22 | 3adant3 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( G e. UHGraph /\ F e. ( G GraphIso H ) ) ) |
| 24 | grimcnv | |- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> `' F e. ( H GraphIso G ) ) ) |
|
| 25 | 24 | imp | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) ) -> `' F e. ( H GraphIso G ) ) |
| 26 | 23 25 | syl | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> `' F e. ( H GraphIso G ) ) |
| 27 | 26 | anim1i | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( `' F e. ( H GraphIso G ) /\ ( F " K ) e. D ) ) |
| 28 | 2 1 | uhgrimedgi | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ ( `' F e. ( H GraphIso G ) /\ ( F " K ) e. D ) ) -> ( `' F " ( F " K ) ) e. E ) |
| 29 | 20 27 28 | syl2an2r | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( `' F " ( F " K ) ) e. E ) |
| 30 | 18 29 | eqeltrrd | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> K e. E ) |
| 31 | 7 30 | impbida | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( K e. E <-> ( F " K ) e. D ) ) |