This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between hypergraphs is a bijection between their vertices that preserves adjacency for simple edges, i.e. there is a simple edge in one graph connecting one or two vertices iff there is a simple edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025) (Revised by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrimedgi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| uhgrimedgi.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | ||
| uhgrimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| uhgrimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| Assertion | uhgrimprop | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimedgi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | uhgrimedgi.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | |
| 3 | uhgrimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 4 | uhgrimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 5 | 3 4 | grimf1o | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 7 | 3simpa | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) | |
| 8 | simp3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 9 | prssi | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ⊆ 𝑉 ) | |
| 10 | 9 3 | sseqtrdi | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 11 | 1 2 | uhgrimedg | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ { 𝑥 , 𝑦 } ⊆ ( Vtx ‘ 𝐺 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
| 12 | 7 8 10 11 | syl2an3an | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
| 13 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) | |
| 14 | 5 13 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 Fn 𝑉 ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 Fn 𝑉 ) |
| 16 | 15 | anim1i | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 17 | 3anass | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 19 | fnimapr | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ) |
| 21 | 20 | eleq1d | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
| 22 | 12 21 | bitrd | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
| 23 | 22 | ralrimivva | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
| 24 | 6 23 | jca | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) |