This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsval.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tsmsval.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | ||
| tsmsval.l | ⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | ||
| tsmsval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| tsmsval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| tsmsval2.a | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) | ||
| Assertion | tsmsval2 | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsval.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tsmsval.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| 4 | tsmsval.l | ⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | |
| 5 | tsmsval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 6 | tsmsval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 7 | tsmsval2.a | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) | |
| 8 | df-tsms | ⊢ tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
| 10 | vex | ⊢ 𝑓 ∈ V | |
| 11 | 10 | dmex | ⊢ dom 𝑓 ∈ V |
| 12 | 11 | pwex | ⊢ 𝒫 dom 𝑓 ∈ V |
| 13 | 12 | inex1 | ⊢ ( 𝒫 dom 𝑓 ∩ Fin ) ∈ V |
| 14 | 13 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) ∈ V ) |
| 15 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑤 = 𝐺 ) | |
| 16 | 15 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝐺 ) ) |
| 17 | 16 2 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( TopOpen ‘ 𝑤 ) = 𝐽 ) |
| 18 | id | ⊢ ( 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) → 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) | |
| 19 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) | |
| 20 | 19 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = dom 𝐹 ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom 𝐹 = 𝐴 ) |
| 22 | 20 21 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = 𝐴 ) |
| 23 | 22 | pweqd | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 𝒫 dom 𝑓 = 𝒫 𝐴 ) |
| 24 | 23 | ineq1d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 25 | 24 3 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) = 𝑆 ) |
| 26 | 18 25 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑠 = 𝑆 ) |
| 27 | 26 | rabeqdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
| 28 | 26 27 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
| 29 | 28 | rneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
| 30 | 29 4 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) = 𝐿 ) |
| 31 | 26 30 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) = ( 𝑆 filGen 𝐿 ) ) |
| 32 | 17 31 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) = ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ) |
| 33 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑓 = 𝐹 ) | |
| 34 | 33 | reseq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑓 ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) ) |
| 35 | 15 34 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
| 36 | 26 35 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) |
| 37 | 32 36 | fveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 38 | 14 37 | csbied | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 39 | 5 | elexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 40 | 6 | elexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 41 | fvexd | ⊢ ( 𝜑 → ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ∈ V ) | |
| 42 | 9 38 39 40 41 | ovmpod | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |