This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of limit points of an infinite group sum for the topological group G . If G is Hausdorff, then there will be at most one element in this set and U. ( W tsums F ) selects this unique element if it exists. ( W tsums F ) ~1o is a way to say that the sum exists and is unique. Note that unlike sum_ ( df-sum ) and gsum ( df-gsum ), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tsms | ⊢ tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctsu | ⊢ tsums | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | 3 | cv | ⊢ 𝑓 |
| 5 | 4 | cdm | ⊢ dom 𝑓 |
| 6 | 5 | cpw | ⊢ 𝒫 dom 𝑓 |
| 7 | cfn | ⊢ Fin | |
| 8 | 6 7 | cin | ⊢ ( 𝒫 dom 𝑓 ∩ Fin ) |
| 9 | vs | ⊢ 𝑠 | |
| 10 | ctopn | ⊢ TopOpen | |
| 11 | 1 | cv | ⊢ 𝑤 |
| 12 | 11 10 | cfv | ⊢ ( TopOpen ‘ 𝑤 ) |
| 13 | cflf | ⊢ fLimf | |
| 14 | 9 | cv | ⊢ 𝑠 |
| 15 | cfg | ⊢ filGen | |
| 16 | vz | ⊢ 𝑧 | |
| 17 | vy | ⊢ 𝑦 | |
| 18 | 16 | cv | ⊢ 𝑧 |
| 19 | 17 | cv | ⊢ 𝑦 |
| 20 | 18 19 | wss | ⊢ 𝑧 ⊆ 𝑦 |
| 21 | 20 17 14 | crab | ⊢ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } |
| 22 | 16 14 21 | cmpt | ⊢ ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) |
| 23 | 22 | crn | ⊢ ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) |
| 24 | 14 23 15 | co | ⊢ ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) |
| 25 | 12 24 13 | co | ⊢ ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) |
| 26 | cgsu | ⊢ Σg | |
| 27 | 4 19 | cres | ⊢ ( 𝑓 ↾ 𝑦 ) |
| 28 | 11 27 26 | co | ⊢ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) |
| 29 | 17 14 28 | cmpt | ⊢ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) |
| 30 | 29 25 | cfv | ⊢ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 31 | 9 8 30 | csb | ⊢ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 32 | 1 3 2 2 31 | cmpo | ⊢ ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 33 | 0 32 | wceq | ⊢ tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) |