This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsval.b | |- B = ( Base ` G ) |
|
| tsmsval.j | |- J = ( TopOpen ` G ) |
||
| tsmsval.s | |- S = ( ~P A i^i Fin ) |
||
| tsmsval.l | |- L = ran ( z e. S |-> { y e. S | z C_ y } ) |
||
| tsmsval.g | |- ( ph -> G e. V ) |
||
| tsmsval2.f | |- ( ph -> F e. W ) |
||
| tsmsval2.a | |- ( ph -> dom F = A ) |
||
| Assertion | tsmsval2 | |- ( ph -> ( G tsums F ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsval.b | |- B = ( Base ` G ) |
|
| 2 | tsmsval.j | |- J = ( TopOpen ` G ) |
|
| 3 | tsmsval.s | |- S = ( ~P A i^i Fin ) |
|
| 4 | tsmsval.l | |- L = ran ( z e. S |-> { y e. S | z C_ y } ) |
|
| 5 | tsmsval.g | |- ( ph -> G e. V ) |
|
| 6 | tsmsval2.f | |- ( ph -> F e. W ) |
|
| 7 | tsmsval2.a | |- ( ph -> dom F = A ) |
|
| 8 | df-tsms | |- tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |
|
| 9 | 8 | a1i | |- ( ph -> tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) ) |
| 10 | vex | |- f e. _V |
|
| 11 | 10 | dmex | |- dom f e. _V |
| 12 | 11 | pwex | |- ~P dom f e. _V |
| 13 | 12 | inex1 | |- ( ~P dom f i^i Fin ) e. _V |
| 14 | 13 | a1i | |- ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) e. _V ) |
| 15 | simplrl | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> w = G ) |
|
| 16 | 15 | fveq2d | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( TopOpen ` w ) = ( TopOpen ` G ) ) |
| 17 | 16 2 | eqtr4di | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( TopOpen ` w ) = J ) |
| 18 | id | |- ( s = ( ~P dom f i^i Fin ) -> s = ( ~P dom f i^i Fin ) ) |
|
| 19 | simprr | |- ( ( ph /\ ( w = G /\ f = F ) ) -> f = F ) |
|
| 20 | 19 | dmeqd | |- ( ( ph /\ ( w = G /\ f = F ) ) -> dom f = dom F ) |
| 21 | 7 | adantr | |- ( ( ph /\ ( w = G /\ f = F ) ) -> dom F = A ) |
| 22 | 20 21 | eqtrd | |- ( ( ph /\ ( w = G /\ f = F ) ) -> dom f = A ) |
| 23 | 22 | pweqd | |- ( ( ph /\ ( w = G /\ f = F ) ) -> ~P dom f = ~P A ) |
| 24 | 23 | ineq1d | |- ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) = ( ~P A i^i Fin ) ) |
| 25 | 24 3 | eqtr4di | |- ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) = S ) |
| 26 | 18 25 | sylan9eqr | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> s = S ) |
| 27 | 26 | rabeqdv | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> { y e. s | z C_ y } = { y e. S | z C_ y } ) |
| 28 | 26 27 | mpteq12dv | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( z e. s |-> { y e. s | z C_ y } ) = ( z e. S |-> { y e. S | z C_ y } ) ) |
| 29 | 28 | rneqd | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ran ( z e. s |-> { y e. s | z C_ y } ) = ran ( z e. S |-> { y e. S | z C_ y } ) ) |
| 30 | 29 4 | eqtr4di | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ran ( z e. s |-> { y e. s | z C_ y } ) = L ) |
| 31 | 26 30 | oveq12d | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) = ( S filGen L ) ) |
| 32 | 17 31 | oveq12d | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) = ( J fLimf ( S filGen L ) ) ) |
| 33 | simplrr | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> f = F ) |
|
| 34 | 33 | reseq1d | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( f |` y ) = ( F |` y ) ) |
| 35 | 15 34 | oveq12d | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( w gsum ( f |` y ) ) = ( G gsum ( F |` y ) ) ) |
| 36 | 26 35 | mpteq12dv | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( y e. s |-> ( w gsum ( f |` y ) ) ) = ( y e. S |-> ( G gsum ( F |` y ) ) ) ) |
| 37 | 32 36 | fveq12d | |- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |
| 38 | 14 37 | csbied | |- ( ( ph /\ ( w = G /\ f = F ) ) -> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |
| 39 | 5 | elexd | |- ( ph -> G e. _V ) |
| 40 | 6 | elexd | |- ( ph -> F e. _V ) |
| 41 | fvexd | |- ( ph -> ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) e. _V ) |
|
| 42 | 9 38 39 40 41 | ovmpod | |- ( ph -> ( G tsums F ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |