This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| topssnei.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | topssnei | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | topssnei.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | simpl2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝐾 ∈ Top ) | |
| 4 | simprl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝐽 ⊆ 𝐾 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝐽 ∈ Top ) | |
| 6 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 7 | 1 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑥 ⊆ 𝑋 ) |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑥 ⊆ 𝑋 ) |
| 9 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐽 ) |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐽 ) |
| 11 | 4 10 | sseldd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐾 ) |
| 12 | 1 | neiss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) |
| 13 | 5 6 12 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 14 | 1 | neiint | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 15 | 5 13 8 14 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 16 | 6 15 | mpbid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 17 | opnneiss | ⊢ ( ( 𝐾 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐾 ∧ 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) | |
| 18 | 3 11 16 17 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 19 | 1 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑥 ) |
| 20 | 5 8 19 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑥 ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑋 = 𝑌 ) | |
| 22 | 8 21 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑥 ⊆ 𝑌 ) |
| 23 | 2 | ssnei2 | ⊢ ( ( ( 𝐾 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑌 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 24 | 3 18 20 22 23 | syl22anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ ( 𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝑥 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 25 | 24 | expr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 26 | 25 | ssrdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( nei ‘ 𝐾 ) ‘ 𝑆 ) ) |