This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpnei.1 | |- X = U. J |
|
| topssnei.2 | |- Y = U. K |
||
| Assertion | topssnei | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ J C_ K ) -> ( ( nei ` J ) ` S ) C_ ( ( nei ` K ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | |- X = U. J |
|
| 2 | topssnei.2 | |- Y = U. K |
|
| 3 | simpl2 | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> K e. Top ) |
|
| 4 | simprl | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> J C_ K ) |
|
| 5 | simpl1 | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> J e. Top ) |
|
| 6 | simprr | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> x e. ( ( nei ` J ) ` S ) ) |
|
| 7 | 1 | neii1 | |- ( ( J e. Top /\ x e. ( ( nei ` J ) ` S ) ) -> x C_ X ) |
| 8 | 5 6 7 | syl2anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> x C_ X ) |
| 9 | 1 | ntropn | |- ( ( J e. Top /\ x C_ X ) -> ( ( int ` J ) ` x ) e. J ) |
| 10 | 5 8 9 | syl2anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> ( ( int ` J ) ` x ) e. J ) |
| 11 | 4 10 | sseldd | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> ( ( int ` J ) ` x ) e. K ) |
| 12 | 1 | neiss2 | |- ( ( J e. Top /\ x e. ( ( nei ` J ) ` S ) ) -> S C_ X ) |
| 13 | 5 6 12 | syl2anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> S C_ X ) |
| 14 | 1 | neiint | |- ( ( J e. Top /\ S C_ X /\ x C_ X ) -> ( x e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` x ) ) ) |
| 15 | 5 13 8 14 | syl3anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> ( x e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` x ) ) ) |
| 16 | 6 15 | mpbid | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> S C_ ( ( int ` J ) ` x ) ) |
| 17 | opnneiss | |- ( ( K e. Top /\ ( ( int ` J ) ` x ) e. K /\ S C_ ( ( int ` J ) ` x ) ) -> ( ( int ` J ) ` x ) e. ( ( nei ` K ) ` S ) ) |
|
| 18 | 3 11 16 17 | syl3anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> ( ( int ` J ) ` x ) e. ( ( nei ` K ) ` S ) ) |
| 19 | 1 | ntrss2 | |- ( ( J e. Top /\ x C_ X ) -> ( ( int ` J ) ` x ) C_ x ) |
| 20 | 5 8 19 | syl2anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> ( ( int ` J ) ` x ) C_ x ) |
| 21 | simpl3 | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> X = Y ) |
|
| 22 | 8 21 | sseqtrd | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> x C_ Y ) |
| 23 | 2 | ssnei2 | |- ( ( ( K e. Top /\ ( ( int ` J ) ` x ) e. ( ( nei ` K ) ` S ) ) /\ ( ( ( int ` J ) ` x ) C_ x /\ x C_ Y ) ) -> x e. ( ( nei ` K ) ` S ) ) |
| 24 | 3 18 20 22 23 | syl22anc | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ ( J C_ K /\ x e. ( ( nei ` J ) ` S ) ) ) -> x e. ( ( nei ` K ) ` S ) ) |
| 25 | 24 | expr | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ J C_ K ) -> ( x e. ( ( nei ` J ) ` S ) -> x e. ( ( nei ` K ) ` S ) ) ) |
| 26 | 25 | ssrdv | |- ( ( ( J e. Top /\ K e. Top /\ X = Y ) /\ J C_ K ) -> ( ( nei ` J ) ` S ) C_ ( ( nei ` K ) ` S ) ) |